In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Antagonist Materials
3. Results
4. Discussion
5. Conclusions
- Porcelain as an antagonist material caused the highest wear on both isosit and nanohybrid composite (NHC) artificial teeth, indicating caution when used in removable dentures, especially against softer materials.
- Isosit and NHC artificial teeth showed similar wear resistance, suggesting both materials are viable choices depending on restorative needs.
- Using the same material bilaterally (e.g., isosit–isosit or NHC–NHC) tended to reduce wear, which may help maintain occlusal stability over time, although this was not statistically significant.
- Dental practitioners should aim to select compatible opposing materials, as matched materials across arches may reduce occlusal wear and extend prosthesis longevity.
- Future clinical studies are necessary to evaluate the long-term wear behavior of these materials in functional oral environments, including scenarios with porcelain antagonists in both arches.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuda, R.; Yoneyama, Y.; Morokuma, M.; Ohkubo, C. The influence of vertical dimension of occlusion changes on the electroencephalograms of complete denture wearers. J. Prosthodont. Res. 2014, 58, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kamonwanon, P.; Yodmongkol, S.; Chantarachindawong, R.; Thaweeboon, S.; Thaweeboon, B.; Srikhirin, T. Wear resistance of a modified polymethyl methacrylate artificial tooth compared to five commercially available artificial tooth materials. J. Prosthet. Dent. 2015, 114, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Mudliar, V.L.; Tieh, M.T.; Aarts, J.M.; Paras, A.; Choi, J.J.E. Wear of modern denture teeth—A systematic review. Oral 2022, 2, 95–111. [Google Scholar] [CrossRef]
- Al Saadi, A.S.; El-Damanhoury, H.M.; Khalifa, N. 2D and 3D wear analysis of 3D printed and prefabricated artificial teeth. Int. Dent. J. 2023, 73, 87–92. [Google Scholar] [CrossRef]
- Munshi, N.; Rosenblum, M.; Jiang, S.; Flinton, R. In vitro wear resistance of nano-hybrid composite denture teeth. J. Prosthodont. 2017, 26, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Yin, H.; Wang, L.; Meng, Y. Wear behavior of seven artificial resin teeth assessed with three-dimensional measurements. J. Prosthet. Dent. 2014, 112, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, M.; Albashaireh, Z.S.; Kern, M. Wear resistance of nano-filled composite resin and feldspathic ceramic artificial teeth. J. Prosthet. Dent. 2008, 100, 441–448. [Google Scholar] [CrossRef]
- Ali, S.A.; Abozaed, H.W.; Jazar, H.A.; Mostafa, A.Z. Surface hardness and wear resistance of prefabricated and CAD-CAM milled artificial teeth: A cross-over clinical study. J. Prosthodont. 2025, 34, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Nikanjam, S.; Shishehian, A.; Khazaei, S.; Fotovat, F.; Pana, N.H. A comparative evaluation of wear resistance of three types of artificial acrylic teeth after removing the glaze layer. Dent. Res. J. 2022, 19, 59. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Si, W.; Feng, H.; Tao, Y.; Ma, Z. Friction and wear behaviors of dental ceramics against natural tooth enamel. J. Eur. Ceram. Soc. 2012, 32, 2599–2606. [Google Scholar] [CrossRef]
- Bani, D.; Bani, T.; Bergamini, M. Morphologic and biochemical changes of the masseter muscles induced by occlusal wear: Studies in rat model. J. Dent. Res. 1999, 78, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Powers, J.M. Craig’s Restorative Dental Materials, 13th ed.; Mosby Elsevier: St. Louis, MO, USA, 2012; pp. 142–143. [Google Scholar]
- Zeng, J.; Sato, Y.; Ohkubo, C.; Hosoi, T. In vitro wear resistance of three types of composite resin denture teeth. J. Prosthet. Dent. 2005, 94, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S. In vitro wear of nano-composite denture teeth. J. Prosthodont. 2004, 13, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Kawano, F.; Ohguri, T.; Ichikawa, T.; Mizuno, I.; Hasegawa, A. Shock absorbability and hardness of commercially available denture teeth. Int. J. Prosthodont. 2001, 15, 243–247. [Google Scholar]
- Stober, T.; Lutz, T.; Gilde, H.; Rammelsberg, P. Wear of resin denture teeth by two-body contact. Dent. Mater. 2006, 22, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Sato, Y.; Taji, T.; Akagawa, Y.; Lambrechts, P.; Vanherle, G. An in vitro wear study of posterior denture tooth materials on human enamel. J. Oral Rehabil. 2001, 28, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Winkler, S.; Monasky, G.; Kwok, J. Laboratory wear investigation of resin posterior denture teeth. J. Prosthet. Dent. 1992, 67, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.I.; Soderholm, K.J. Effects of filler size, water and alcohol on hardness and laboratory wear of dental composites. Acta Odontol. Scand. 2004, 62, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Stober, T.; Henninger, M.; Schmitter, M.; Pritsch, M.; Rammelsberg, P. Three-body wear of resin denture teeth with and without nanofillers. J. Prosthet. Dent. 2010, 103, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Hasegawa, J.; Hiranuma, K. Properties of experimental high abrasion resistance plastic teeth. J. Biomed. Mater. Res. 1990, 24, 1661–1671. [Google Scholar]
- Teraoka, F.; Matsumoto, T.; Nakagawa, M.; Takahashi, J. Characterization of hard resin teeth with nanocomposite enamel layer. J. Jpn. Soc. Dent. Mater. Dev. 2002, 21, 351–356. [Google Scholar]
- Hahnel, S.; Behr, M.; Handel, G.; Rosentritt, M. Two-body wear of artificial acrylic and composite resin teeth in relation to antagonist material. J. Prosthet. Dent. 2009, 101, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. Wear of ceramic and antagonist—A systematic evaluation of influencing factors in vitro. Dent. Mater. 2008, 24, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.M.; Bartlett, D.W. A comparison of two-dimensional and three-dimensional measurements of wear in a laboratory investigation. Dent. Mater. 2010, 26, e221–e225. [Google Scholar] [CrossRef] [PubMed]
- Sajewicz, E. On evaluation of wear resistance of tooth enamel and dental materials. Wear 2006, 260, 1256–1261. [Google Scholar] [CrossRef]
- Mello, P.C.; Coppedê, A.R.; Maced, A.P.; Mattos, M.G.C.; Rodrigues, R.C.S.; Ribeiro, R.F. Abrasion wear resistance of different artificial teeth opposed to metal and composite antagonists. J. Appl. Oral Sci. 2009, 17, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhu, Y.; Chen, C.; Han, Y.; Zhou, H. Tooth wear and tribological investigations in dentistry. Appl. Bionics Biomech. 2022, 2022, 2861197. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Choi, J.-W.; Jeong, C.-M.; Huh, J.-B.; Lee, S.-H.; Lee, H.; Yun, M.-J. Evaluating the wear of resin teeth by different opposing restorative materials. Materials 2019, 12, 3684. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D. How to qualify and validate wear simulation devices and methods. Dent. Mater. 2006, 22, 712–734. [Google Scholar] [CrossRef] [PubMed]
- Delong, R. Intra-oral restorative materials wear: Rethinking the current approaches: How to measure wear. Dent. Mater. 2006, 22, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Delong, R.; Douglas, W. An artificial oral environment for testing dental materials. IEEE Trans. Biomed. Eng. 1991, 38, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Preis, V.; Hahnel, S.; Behr, M.; Rosentritt, M. Contact wear of artificial denture teeth. J. Prosthodont. Res. 2018, 62, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Haraldson, T.; Karlsson, U.; Carlsson, G. Bite force and oral function in complete denture wearers. J. Oral Rehabil. 1979, 6, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ohlmann, B.; Rohstock, K.; Kugler, J.; Gilde, H.; Dreyhaupt, J.; Stober, T. Influences on clinical wear of acrylic denture teeth: A pilot study. Int. J. Prosthodont. 2007, 20, 496–498. [Google Scholar] [PubMed]
- Benetti, A.R.; Larsen, L.; Dowling, A.H.; Fleming, G.J.P. Assessment of wear facets produced by the ACTA wear machine. J. Dent. 2016, 45, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, T.J.; Ogle, R.E.; Davis, E.L. Twelve-month results of a clinical wear study of three artificial tooth materials. J. Prosthet. Dent. 1995, 74, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Ilangkumaran, R.; Srinivasan, J.; Baburajan, K.; Balaji, N. Two-body wear of newly introduced nanocomposite teeth and cross-linked four layered acrylic teeth: A comparative in vitro study. J. Indian Prosthodont. Soc. 2014, 14, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Suwannaroop, P.; Chaijareenont, P.; Koottathape, N.; Takahashi, H.; Arksornnukit, M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent. Mater. J. 2011, 30, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Whitman, D.J.; McKinney, J.E.; Hinman, R.W.; Hesby, R.A.; Pelleu, G.B., Jr. In vitro wear rates of three types of commercial denture tooth materials. J. Prosthet. Dent. 1987, 57, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Jooste, C.; Geerts, G.; Adams, L. Comparison of the clinical abrasion resistance of six commercially available denture teeth. J. Prosthet. Dent. 1997, 77, 23–27. [Google Scholar] [CrossRef] [PubMed]
Antagonist Materials | Testing Materials | Total Volume Difference (mm3) | |||||
---|---|---|---|---|---|---|---|
n | Mean | Standard Error of Mean | Standard Deviation | Minimum | Maximum | ||
Isosit | Isosit | 10 | 199.08 | 29.82 | 94.29 | 105.44 | 368.50 |
NHC | 9 | 222.40 | 31.59 | 94.78 | 113.30 | 356.71 | |
Total | 19 | 210.13 A | 21.25 | 92.63 | 105.44 | 368.50 | |
NHC | İsosit | 10 | 217.95 | 26.06 | 82.40 | 109.42 | 355.72 |
NHC | 10 | 197.09 | 33.35 | 105.48 | 105.83 | 443.66 | |
Total | 20 | 207.52 A | 20.73 | 92.74 | 105.83 | 443.66 | |
Porcelain | İsosit | 10 | 462.85 | 32.99 | 104.29 | 297.71 | 623.18 |
NHC | 9 | 479.34 | 37.78 | 113.35 | 306.57 | 621.35 | |
Total | 19 | 470.66 B | 24.30 | 105.93 | 297.71 | 623.18 |
Source of Variation | SS | DF | MS | F | p-Value |
---|---|---|---|---|---|
Testing Materials | 578 | 1 | 578 | 0.0585 | 0.810 |
Antagonist Materials | 875,108 | 2 | 437,554 | 44.2836 | 0.000 |
Testing Materials * Antagonist Materials | 5547 | 2 | 2774 | 0.2807 | 0.756 |
Error | 513,798 | 52 | 9881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yelekçi, S.; Şentürk, A.; Akaltan, F. In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis. J. Funct. Biomater. 2025, 16, 264. https://doi.org/10.3390/jfb16070264
Yelekçi S, Şentürk A, Akaltan F. In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis. Journal of Functional Biomaterials. 2025; 16(7):264. https://doi.org/10.3390/jfb16070264
Chicago/Turabian StyleYelekçi, Sıla, Ayben Şentürk, and Funda Akaltan. 2025. "In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis" Journal of Functional Biomaterials 16, no. 7: 264. https://doi.org/10.3390/jfb16070264
APA StyleYelekçi, S., Şentürk, A., & Akaltan, F. (2025). In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis. Journal of Functional Biomaterials, 16(7), 264. https://doi.org/10.3390/jfb16070264