Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,581)

Search Parameters:
Keywords = in vitro organ models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5695 KiB  
Article
Impact of miR-181a on SIRT1 Expression and Senescence in Hutchinson–Gilford Progeria Syndrome
by Eva-Maria Lederer, Felix Quirin Fenzl, Peter Krüger, Moritz Schroll, Ramona Hartinger and Karima Djabali
Diseases 2025, 13(8), 245; https://doi.org/10.3390/diseases13080245 - 4 Aug 2025
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic cellular dysfunction. While autophagy and inflammation are key dysregulated pathways in HGPS, the role of microRNAs (miRNAs) in these processes remains poorly understood. Methods: We performed an extensive literature review to identify miRNAs involved in autophagy and inflammation. Through stem-loop RT-qPCR in aging HGPS and control fibroblast strains, we identified significant miRNAs and focused on the most prominent one, miR-181a-5p, for in-depth analysis. We validated our in vitro findings with miRNA expression studies in skin biopsies from an HGPS mouse model and conducted functional assays in human fibroblasts, including immunofluorescence staining, β-Galactosidase assay, qPCR, and Western blot analysis. Transfection studies were performed using an miR-181a-5p mimic and its inhibitor. Results: We identified miR-181a-5p as a critical regulator of premature senescence in HGPS. miR-181a-5p was significantly upregulated in HGPS fibroblasts and an HGPS mouse model, correlating with Sirtuin 1 (SIRT1) suppression and induction of senescence. Additionally, we demonstrated that TGFβ1 induced miR-181a-5p expression, linking inflammation to miRNA-mediated senescence. Inhibiting miR-181a-5p restored SIRT1 levels, increased proliferation, and alleviated senescence in HGPS fibroblasts, supporting its functional relevance in disease progression. Conclusions: These findings highlight the important role of miR-181a-5p in premature aging and suggest its potential as a therapeutic target for modulating senescence in progeroid syndromes. Full article
(This article belongs to the Section Rare Syndrome)
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 33
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

22 pages, 2520 KiB  
Review
The Advance of Single-Cell RNA Sequencing Applications in Ocular Physiology and Disease Research
by Ying Cheng, Sihan Gu, Xueqing Lu and Cheng Pei
Biomolecules 2025, 15(8), 1120; https://doi.org/10.3390/biom15081120 - 4 Aug 2025
Viewed by 65
Abstract
The eye, a complex organ essential for visual perception, is composed of diverse cell populations with specialized functions; however, the complex interplay between these cellular components and their underlying molecular mechanisms remains largely elusive. Traditional biotechnologies, such as bulk RNA sequencing and in [...] Read more.
The eye, a complex organ essential for visual perception, is composed of diverse cell populations with specialized functions; however, the complex interplay between these cellular components and their underlying molecular mechanisms remains largely elusive. Traditional biotechnologies, such as bulk RNA sequencing and in vitro models, are limited in capturing cellular heterogeneity or accurately mimicking the complexity of human ophthalmic diseases. The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized ocular research by enabling high-resolution analysis at the single-cell level, uncovering cellular heterogeneity, and identifying disease-specific gene profiles. In this review, we provide a review of scRNA-seq application advancement in ocular physiology and pathology, highlighting its role in elucidating the molecular mechanisms of various ocular diseases, including myopia, ocular surface and corneal diseases, glaucoma, uveitis, retinal diseases, and ocular tumors. By providing novel insights into cellular diversity, gene expression dynamics, and cell–cell interactions, scRNA-seq has facilitated the identification of novel biomarkers and therapeutic targets, and the further integration of scRNA-seq with other omics technologies holds promise for deepening our understanding of ocular health and diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 355
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

27 pages, 6405 KiB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 922
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 4394 KiB  
Article
Nonclinical Human Cardiac New Approach Methodologies (NAMs) Predict Vanoxerine-Induced Proarrhythmic Potential
by M. Iveth Garcia, Bhavya Bhardwaj, Keri Dame, Verena Charwat, Brian A. Siemons, Ishan Goswami, Omnia A. Ismaiel, Sabyasachy Mistry, Tromondae K. Feaster, Kevin E. Healy, Alexandre J. S. Ribeiro and Ksenia Blinova
J. Cardiovasc. Dev. Dis. 2025, 12(8), 285; https://doi.org/10.3390/jcdd12080285 - 26 Jul 2025
Viewed by 436
Abstract
New approach methodologies (NAMs), including microphysiological systems (MPSs), can recapitulate structural and functional complexities of organs. Vanoxerine was reported to induce cardiac adverse events, including torsade de points (TdP), in a Phase III clinical trial. Despite earlier nonclinical animal models and Phase I–II [...] Read more.
New approach methodologies (NAMs), including microphysiological systems (MPSs), can recapitulate structural and functional complexities of organs. Vanoxerine was reported to induce cardiac adverse events, including torsade de points (TdP), in a Phase III clinical trial. Despite earlier nonclinical animal models and Phase I–II clinical trials, events of QT prolongation or proarrhythmia were not observed. Here, we utilized cardiac NAMs to evaluate the functional consequences of vanoxerine treatment on human cardiac excitation–contraction coupling. The cardiac MPS used in this study was a microfabricated fluidic culture platform with human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) capable of evaluating voltage, intracellular calcium handling, and contractility. Likewise, the hiPSC-CM comprehensive in vitro proarrhythmia assay (CiPA) was employed based on multielectrode array (MEA). Vanoxerine treatment delayed repolarization in a concentration-dependent manner and induced proarrhythmic events in both NAM platforms. The complex cardiac MPS displayed a frequency-dependent vanoxerine response such that EADs were eliminated at a faster pacing rate (1.5 Hz). Moreover, exposure analysis revealed a 99% vanoxerine loss in the cardiac MPS. TdP risk analysis demonstrated high to intermediate TdP risk at clinically relevant concentrations of vanoxerine and frequency-independent EAD events in the hiPSC-CM CiPA model. These findings demonstrate that nonclinical cardiac NAMs can recapitulate clinical outcomes, including detection of vanoxerine-induced delayed repolarization and proarrhythmic effects. Moreover, this work provides a foundation to evaluate the safety and efficacy of novel compounds to reduce the dependence on animal studies. Full article
Show Figures

Graphical abstract

39 pages, 3100 KiB  
Review
RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis
by Richard A. McDonald, Armando Varela-Ramirez and Amanda K. Ashley
Biology 2025, 14(8), 936; https://doi.org/10.3390/biology14080936 - 25 Jul 2025
Viewed by 514
Abstract
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades [...] Read more.
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies. This narrative review examines RAS genes and Ras proteins in both housekeeping functions, such as cell growth, apoptosis, and protein trafficking, as well as in tumorigenesis, integrating insights from human (HRAS, KRAS, NRAS), mouse (Hras, Kras, Nras), and Drosophila melanogaster (ras) models. While RAS mutations are tightly linked to human tumors, the interplay between their standard and oncogenic functions remains complex. Even within the same tissue, distinct cancer pathways—such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways—can drive varied disease courses, complicating treatment. Advanced-stage cancers add further challenges, including heterogeneity, protective microenvironments, drug resistance, and adaptive progression. This synthesis organizes current knowledge of RAS gene regulation and Ras protein function from genomic alterations and intracellular signaling to membrane dynamics and extracellular interactions, offering a layered perspective on the Ras pathway’s role in both housekeeping and tumorigenic contexts. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

16 pages, 764 KiB  
Review
Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics
by Kinga Lis
Nutrients 2025, 17(15), 2423; https://doi.org/10.3390/nu17152423 - 24 Jul 2025
Viewed by 401
Abstract
Biotin (vitamin B7) is a common, naturally occurring water-soluble vitamin. It belongs to the broad group of B vitamins. It is a common ingredient in dietary supplements, cosmetics, medicines, and parapharmaceutical preparations administered orally or applied topically (to the skin, hair, nails). The [...] Read more.
Biotin (vitamin B7) is a common, naturally occurring water-soluble vitamin. It belongs to the broad group of B vitamins. It is a common ingredient in dietary supplements, cosmetics, medicines, and parapharmaceutical preparations administered orally or applied topically (to the skin, hair, nails). The problem of the relationship between vitamin B supplementation and sensitivity seems to be multi-threaded. There is little literature data that would confirm that oral vitamin B supplementation or local exposure to biotin is a significant sensitizing factor. Moreover, it seems that allergy to vitamin B7 is very rare. It is possible, however, that the relationship between biotin and hypersensitivity is not limited to its direct action, but results from its essential metabolic function. Vitamin B7, as a cofactor of five carboxylases, affects the main pathways of cellular metabolism. Both deficiency and excess of biotin can result in metabolic disorders, which can have a significant impact on the homeostasis of the entire organism, including the efficient functioning of the immune system. Dysregulation of immune systems leads to its dysfunctional functioning, which can also lead to sensitization to various environmental antigens (allergens). Biotin is also used as an element of some methodological models in immunochemical tests (in vitro diagnostics), including methods used to measure the concentration of immunoglobulin E (IgE), both total (tIgE) and allergen-specific (sIgE). For this reason, vitamin B7 supplementation can be a significant interfering factor in some immunochemical tests, which can lead to false laboratory test results, both false positive and false negative, depending on the test format. This situation can have a direct impact on the quality and effectiveness of diagnostics in various clinical situations, including allergy diagnostics. This review focuses on the role of biotin in allergic reactions, both as a causative factor (allergen/hapten), a factor predisposing to the development of sensitization to various allergens, and an interfering factor in immunochemical methods used in laboratory diagnosis of hypersensitivity reactions and how it can be prevented. Full article
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 469
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

16 pages, 2582 KiB  
Article
Optimization of Scanning Distance for Three Intraoral Scanners from Different Manufacturers: An In Vitro Accuracy Analysis
by Perla Hokayem, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Miguel Ángel Fernández-Barrera, Juan Eliezer Zamarripa-Calderón, Hani Tohme, Adam Saleh, Nicolas Nassar, Monika Lukomska-Szymanska and Louis Hardan
Prosthesis 2025, 7(4), 88; https://doi.org/10.3390/prosthesis7040088 - 23 Jul 2025
Viewed by 311
Abstract
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of [...] Read more.
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of three different intraoral scanners (IOSs), and (2) identify the optimal scanning distance for each scanner. Methods: A maxillary arch model was obtained using polyvinyl siloxane impression material and poured with Type IV stone (Octa-rock royal®, Kulzer, Germany). Using three different types of IOSs—the trios 3 shape (TRIOS ® cart, 3Shape, Copenhagen, Denmark); the Helios 500 (Eighteeth ®, Changzhou, China); and the Heron (3Disc ®, Herndon, VA 20170, USA)—ten scans were performed with each of the IOSs with five predetermined distances: 0 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm. Spacers of varying heights were designed using Meshmixer version 3.5 (Autodesk, Inc., Mill Valley, CA, USA) and three-dimensional printed with the Form 2 printer (Formlabs, Somerville, MA, USA). The scanned data was processed using Geomagic Control X (Version 16.0.2.16496, 3D Systems, Wilsonville, OR, USA). Statistical analyses were performed using R Statistical Software (version 4.2.2), with significance set at α = 0.05. Results: Scanning distance significantly influenced scan accuracy for all three scanners. The 3Disc scanner (3Disc, Herndon, VA, USA) demonstrated the highest accuracy at a 7.5 mm distance, while both the Helios 500 (Eighteeth, Changzhou, China) and Trios 3 (3Shape, Copenhagen, Denmark) scanners achieved their best accuracy at a 5 mm distance, as indicated by the lowest root mean square (RMS) values (p < 0.05). Conclusions: To conclude, each IOS has an optimal scanning distance for best accuracy. Trios 3 (3Shape, Copenhagen, Denmark) outperformed the others in both trueness and precision. Future studies should examine these effects under full-arch and clinical conditions. Full article
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 202
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 1944 KiB  
Article
Impact of Polystyrene Microplastics on Human Sperm Functionality: An In Vitro Study of Cytotoxicity, Genotoxicity and Fertility-Related Genes Expression
by Filomena Mottola, Maria Carannante, Ilaria Palmieri, Lorenzo Ibello, Luigi Montano, Mariaceleste Pezzullo, Nicola Mosca, Nicoletta Potenza and Lucia Rocco
Toxics 2025, 13(7), 605; https://doi.org/10.3390/toxics13070605 - 19 Jul 2025
Viewed by 513
Abstract
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to [...] Read more.
Polystyrene microplastics (PS-MPs) released in the environment reportedly affect the reproduction of various organisms, induced oxidative stress and apoptosis, resulting in altered sperm parameters. In this in vitro study, we tested the cytotoxicity and genotoxicity of PS-MPs by exposing human semen samples to PS-MPs levels (105 and 210 μg/mL) for 30–60–90 min. Semen parameters, genome stability, sperm DNA fragmentation (SDF) and reactive oxygen species (ROS) production were analyzed before and after exposure. Moreover, we also evaluated the expression level of spermatozoa-specific expressed genes essential for the fusion with oocyte (DCST1, DCST2, IZUMO1, SPACA6, SOF1, and TMEM95). After PS-MP exposure, semen concentration and morphology did not differ, while sperm vitality and motility decreased in a time-dependent manner. In addition, sperm agglutination was observed in the groups exposed to both PS-MPs concentrations tested. A time- and concentration-dependent reduction in genomic stability, as well as increased SDF and ROS production, was also observed. Moreover, all investigated transcripts were down-regulated after PS-MP exposure. Our results confirm the oxidative stress-mediated genotoxicity and cytotoxicity of PS-MPs on human spermatozoa. The sperm agglutination observed after treatment could be due to the aggregation of PS-MPs already adhered to the sperm membranes, hindering sperm movement and fertilizing capability. Interestingly, the downregulation of genes required for sperm–oocyte fusion, resulting from data on the in vitro experimental system, suggests that PS-MP exposure may have implications for sperm functionality. While these findings highlight potential mechanisms of sperm dysfunction, further investigations using in vivo models are needed to determine their broader biological implications. Possible environmental and working exposure to pollutants should be considered during the counselling for male infertility. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

13 pages, 1664 KiB  
Article
Inclusion Complex of a Cationic Mono-Choline-β-Cyclodextrin Derivative with Resveratrol: Preparation, Characterization, and Wound-Healing Activity
by Sonia Pedotti, Loredana Ferreri, Giuseppe Granata, Giovanni Gambera, Nicola D’Antona, Claudia Giovanna Leotta, Giovanni Mario Pitari and Grazia Maria Letizia Consoli
Int. J. Mol. Sci. 2025, 26(14), 6911; https://doi.org/10.3390/ijms26146911 - 18 Jul 2025
Viewed by 256
Abstract
Resveratrol is one of the most extensively studied natural products due to its pleiotropic health benefits. However, its low water solubility and limited stability hinder its application in the nutraceutical, cosmetic, and pharmaceutical sectors. In this work, we investigated the ability of a [...] Read more.
Resveratrol is one of the most extensively studied natural products due to its pleiotropic health benefits. However, its low water solubility and limited stability hinder its application in the nutraceutical, cosmetic, and pharmaceutical sectors. In this work, we investigated the ability of a cationic mono-choline-β-cyclodextrin derivative to complex trans-resveratrol. The complex was prepared using a phase solubility method without using organic solvents and was found to be stable after freeze-drying. The complex was characterized by a phase solubility study, NMR spectroscopy, and molecular modeling simulations, which revealed a 1:1 stoichiometry, a stability constant of 2051 M−1 (KC), and structural details. Complexation improved resveratrol’s solubility and dissolution rate, reduced its photoinduced trans-to-cis isomerization, and preserved its radical scavenging activity. The wound-healing activity of the complex was demonstrated via in vitro experiments on human keratinocyte cells. Full article
Show Figures

Figure 1

17 pages, 1449 KiB  
Review
Three-Dimensional Culture System: A New Frontier in Cancer Research, Drug Discovery, and Stem Cell-Based Therapy
by Guya Diletta Marconi, Antonella Mazzone, Ylenia Della Rocca, Oriana Trubiani, Jacopo Pizzicannella and Francesca Diomede
Biology 2025, 14(7), 875; https://doi.org/10.3390/biology14070875 - 17 Jul 2025
Viewed by 325
Abstract
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level [...] Read more.
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level to the cellular, tissue, and organ complexity levels. This review focuses on 3D cellular models, such as spheroids and tumoroids, which reproduce tumor heterogeneity and microenvironments. It also includes 3D cultures of mesenchymal stem cells (MSCs), particularly those derived from teeth. In conclusion, 3D models are profoundly impacting the biomedical field by offering more accurate in vitro platforms for drug development and disease modeling, thereby significantly reducing the reliance on animal testing and leading to the advancement of personalized and regenerative medicine. Full article
Show Figures

Figure 1

60 pages, 3898 KiB  
Review
The Therapeutic Potential of Phytochemicals Unlocks New Avenues in the Management of Rheumatoid Arthritis
by Kalina A. Nikolova-Ganeva, Nikolina M. Mihaylova, Lidiya A. Kechidzhieva, Kristina I. Ivanova, Alexander S. Zarkov, Daniel L. Parzhanov, Momchil M. Ivanov and Andrey S. Marchev
Int. J. Mol. Sci. 2025, 26(14), 6813; https://doi.org/10.3390/ijms26146813 - 16 Jul 2025
Viewed by 503
Abstract
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis [...] Read more.
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis affects over 20 million people, with a worldwide prevalence of 0.5–1.0%, exhibiting gender, ethnic, and geographical differences. The progressive disability severely impairs physical motion and quality of life and is finally leading to a shortened life span. The pathogenesis of RA is a complex and still poorly understood process in which genetic and environmental factors are principally associated. Current treatment mostly relies on conventional/non-biological disease-modifying anti-rheumatic drugs (cDMARDs), analgesics, non-steroidal anti-inflammatory drugs, glucocorticoids, steroids, immunosuppresants, and biologic DMARDs, which only control inflammation and pain. Along with side effects (drug toxicity and intolerance), these anti-rheumatic drugs possess limited efficacy. Therefore, the discovery of novel multi-target therapeutics with an improved safety profile that function as inhibitors of RA-linked signaling systems are in high demand, and this is in the interest of both patients and clinicians. Plant-derived extracts, nutritional supplements, dietary medicine, and molecules with anti-inflammatory activity represent promising adjuvant agents or alternatives for RA therapeutics. This review not only aims to discuss the basic features of RA pathogenesis, risk factors, and signaling pathways but also highlights the research progress in pre-clinical RA in in vitro and in vivo models, revealing new avenues in the management of the disease in terms of comprehensive multidisciplinary strategies originating from medicinal plants and plant-derived molecules. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Graphical abstract

Back to TopTop