Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics
Abstract
1. Introduction
2. Biotin
3. Hypersensitivity to Biotin
3.1. Clinical Reports of Biotin Hypersensitivity
3.1.1. Case 1—Occupational Contact Allergy to Biotin [43]
3.1.2. Case 2—Occupational Contact Allergy to Biotin Substrate [44]
3.2. Other Aspects of Biotin Hypersensitivity
3.2.1. Biotin Deficiency and Hypersensitivity Reactions
3.2.2. Biotin Overdose and Hypersensitivity Reactions
3.2.3. Intestinal Microbiota as an Endogenous Source of Biotin in Relation to Allergy and Asthma
3.2.4. Biotin in the Context of Nutraceutical Strategies to Support the Treatment of Asthma and Other Allergic Diseases
4. Biotin Supplementation—A Factor Complicating In Vitro Allergy Diagnosis
5. Biotin Hypersensitivity—Diagnostic Possibilities
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piro, A.; Tagarelli, G.; Lagonia, P.; Tagarelli, A.; Quattrone, A. Casimir Funk: His discovery of the vitamins and their deficiency disorders. Ann. Nutr. Metab. 2010, 57, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Lykstad, J.; Sharma, S. Biochemistry, Water Soluble Vitamins. In StatPearls [Internet]; Updated 6 March 2023; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538510/ (accessed on 1 May 2025).
- Akram, M.; Minir, N.; Daniyal, M.; Egbuna, C.; Găman, M.A.; Onyekere, P.C.; Olatunde, A. Vitamins and Minerals: Types, Sources and Their Functions. In Functional Foods and Nutraceuticals; Egbuna, C., Dable Tupas, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kannan, S.; Balakrishnan, J.; Nagarajan, P. Vitamin B7 (Biotin) and Its Role in Hair, Skin and Nail Health. In Hydrophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease; Shah, A.K., Tappia, P.S., Dhalla, N.S., Eds.; Springer: Cham, Switzerland, 2024; Volume 29. [Google Scholar] [CrossRef]
- Yaman, M.; Çatak, J.; Uğur, H.; Gürbüz, M.; Belli, I.; Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Yavuz, B.B.; Kişmiroğlu, C.; et al. The bioaccessibility of water-soluble vitamins: A review. Trends. Food. Sci. Technol. 2021, 109, 552–563. [Google Scholar] [CrossRef]
- Said, H.M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 2011, 437, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Nitecki, D.E.; Kindler, H.; Goodman, J.W. Immunogenicity of biotinylated hapten-avidin complexes. Mol. Immunol. 1984, 21, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Kane, P.; Holowka, D.; Baird, B. Characterization of model antigens composed of biotinylated haptens bound to avidin. Immunol. Investig. 1990, 19, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Balzer, A.H.A.; Whitehurst, C.B. An Analysis of the Biotin-(Strept)avidin System in Immunoassays: Interference and Mitigation Strategies. Curr. Issues. Mol. Biol. 2023, 45, 8733–8754. [Google Scholar] [CrossRef] [PubMed]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Biotin interference in immunoassays based on biotin-strept(avidin) chemistry: An emerging threat. Biotechnol. Adv. 2019, 37, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Kögl, F.; Tönnis, B. Over the Bios-Problem. Discovery of crystallized Biotin from the Eigelb. 20. Mixture over flat Wachstumsstoffe. Hopp Seyler Z. Physiol. Chem. 1936, 242, 43–73. [Google Scholar] [CrossRef]
- Lanska, D.J. The discovery of niacin, biotin, and pantothenic acid. Ann. Nutr. Metab. 2012, 61, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Wijeratne, S.S.K.; Hassan, Y.I. Biotin. Biofactors 2009, 35, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Calogiuri, G. Vitamin B7 or H (Biotin). W: Hypersensitivity to Vitamins; Bentham Science Publishers Pte. Ltd.: Singapore, 2021. [Google Scholar]
- Gyorgy, P. The Curative Factor (vitamin H) for Egg White Injury, with Particular Reference to Its Presence in Different Foodstuffs and in Yeast. J. Biol. Chem. 1939, 131, 733–744. [Google Scholar] [CrossRef]
- György, P.; Kuhn, R.; Lederer, E. Attempts to Isolate the Factor (vitamin H) Curative of Egg White Injury. J. Biol. Chem. 1939, 131, 745–759. [Google Scholar] [CrossRef]
- West, P.M.; Wilson, P.W. The relation of coenzyme R to biotin. Science 1939, 89, 607–608. [Google Scholar] [CrossRef] [PubMed]
- György, P.; Melville, D.B.; Burk, D.; duVigneaud, V. The possible identity of vitamin H with biotin an coenzyme R. Science 1940, 91, 243–245. [Google Scholar] [CrossRef] [PubMed]
- György, P.; Rose, C.S.; Hofmann, K.; Melville, D.B.; duVigneaud, V. A further note on the identity of vitamin H with biotin. Science 1940, 92, 609. [Google Scholar] [CrossRef] [PubMed]
- duVigneaud, V.; Melville, D.B.; György, P.; Rose, C.S. On the identity of vitamin H with biotin. Science 1940, 92, 62–63. [Google Scholar] [CrossRef] [PubMed]
- duVigneaud, V. The structure of biotin. Science 1942, 96, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, C.E.; Livaniou, E. Biotin Homeostasis and Human Disorders: Recent Findings and Perspectives. Int. J. Mol. Sci. 2024, 25, 6578. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of D-(+)-biotin as a feed additive for all animal species based on a dossier submitted by EUROPE-ASIA Import-Export GmbH. EFSA J. 2012, 10, 2925. [Google Scholar] [CrossRef]
- Obermayer, M.; Lynen, F. Structure of biotin enzymes. Trends. Biochem. Sci. 1976, 1, 169–171. [Google Scholar] [CrossRef]
- Bistas, K.G.; Tadi, P. Biotin. In StatPearls [Internet]; Updated 3 July 2023; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554493/ (accessed on 1 May 2025).
- Fraschetti, C.; Filippi, A.; Guarcini, L.; Steinmetz, V.; Speranza, M. Structure and conformation of protonated D-(+)-biotin in the unsolvated state. J. Phys. Chem. B. 2015, 119, 6198–6203. [Google Scholar] [CrossRef] [PubMed]
- Ouraand, E.; Suomalainen, H. Biotin-active compounds, their existence in nature and the biotin requirements of yeasts. J. Inst. Brew. 1982, 88, 299–308. [Google Scholar] [CrossRef]
- Tolaymat, N.; Mock, D.M. Biotin analysis of commercial vitamin and other nutritional supplements. J. Nutr. 1989, 119, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Kodentsova, V.M.; Vrzhesinskaia, O.A. To substantiation of vitamin and mineral level in fortified food products. Vopr. Pitan. 2011, 80, 64–70. (In Russian) [Google Scholar] [PubMed]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for biotin. EFSA J. 2014, 12, 3580. [Google Scholar] [CrossRef]
- Manwaring, W.H. “Spontaneous” Avitaminosis. Cal. West. Med. 1942, 57, 119–120. [Google Scholar] [PubMed]
- Bateman, W.G. The Digestibility and Utilization of Egg Proteins. J. Biol. Chem. 1916, 26, 263. [Google Scholar] [CrossRef]
- Boas, M. The effect of desiccation on the nutrient value of the protein. Biochem. J. 1927, 21, 712. [Google Scholar] [CrossRef] [PubMed]
- György, P.; Rose, C.S.; Eakin, R.E.; Snell, E.E.; Williams, R.J. Egg-white injury as the result of non absorption or inactivation of biotin. Science 1941, 93, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M. Biotin: The forgotten vitamin. Am. J. Clin. Nutr. 2002, 75, 179–180. [Google Scholar] [CrossRef] [PubMed]
- León-Del-Río, A. Biotin in metabolism, gene expression, and human disease. J. Inherit. Metab. Dis. 2019, 42, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Sirithanakorn, C.; Cronan, J.E. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol. Rev. 2021, 45, fuab003. [Google Scholar] [CrossRef] [PubMed]
- Staggs, C.G.; Sealey, W.M.; McCabe, B.J.; Teague, A.M.; Mock, D.M. Determination of the biotin content of select foods using accurate and sensitive HPLC/avidin binding. J. Food. Compost. Anal. 2004, 17, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.G.; Kim, N. Dietary supplements in dermatology: A review of the evidence for zinc, biotin, vitamin D, nicotinamide, and Polypodium. J. Am. Acad. Dermatol. 2021, 84, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Piccio, L.; Cross, A.H. Use of Vitamins and dietary supplements by patients with multiple sclerosis: A review. JAMA Neurol. 2018, 75, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Hassan, Y.I.; Wijeratne, S.S. Biotin and biotinidase deficiency. Expert. Rev. Endocrinol. Metab. 2008, 3, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Boyer, I.J.; Bergfeld, W.F.; Heldreth, B.; Fiume, M.M.; Gill, L.J. The Cosmetic Ingredient Review Program-Expert Safety Assessments of Cosmetic Ingredients in an Open Forum. Int. J. Toxicol. 2017, 36 (Suppl. S2), 5S–13S. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.B. Biotin and skin sensitivity. J. Allergy 1942, 14, 87–88. [Google Scholar] [CrossRef]
- Nishioka, K.; Seguchi, T.; Kaniwa, M.; Suetomi, Y. Occupational contact dermatitis due to biotin precursor. Contact Dermatitis 1998, 39, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Sakurai-Yageta, M.; Suzuki, Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024, 16, 2444. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.S.; Mock, D.M.; Griffin, J.B.; Zempleni, J. Biotin uptake into human peripheral blood mononuclear cells increases early in the cell cycle, increasing carboxylase activities. J. Nutr. 2002, 132, 1854–1859. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Mock, D.M. Biotin homeostasis during the cell cycle. Nutr. Res. Rev. 2001, 14, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Meléndez, R. Importance of biotin metabolism. Rev. Investig. Clin. 2000, 52, 194–199. (In Spanish) [Google Scholar]
- Kuroishi, T. Regulation of immunological and inflammatory functions by biotin. Can. J. Physiol. Pharmacol. 2015, 93, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Elahi, A.; Sabui, S.; Narasappa, N.N.; Agrawal, S.; Lambrecht, N.W.; Agrawal, A.; Said, H.M. Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4+ T Lymphocytes via Activation of the mTOR Signaling Pathway. J. Immunol. 2018, 200, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Agrawal, A.; Said, H.M. Biotin deficiency enhances the inflammatory response of human dendritic cells. Am. J. Physiol. Cell. Physiol. 2016, 311, C386–C391. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, S.; Eudy, J.D.; Zempleni, J. Biotin supplementation increases expression of genes encoding interferon-gamma, interleukin-1beta, and 3-methylcrotonyl-CoA carboxylase, and decreases expression of the gene encoding interleukin-4 in human peripheral blood mononuclear cells. J. Nutr. 2003, 133, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Launay, S.; Bobe, R.; Lacabaratz-Porret, C.; Bredoux, R.; Kovàcs, T.; Enouf, J.; Papp, B. Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation. J. Biol. Chem. 1997, 272, 10746–10750. [Google Scholar] [CrossRef] [PubMed]
- Kuroishi, T.; Kinbara, M.; Sato, N.; Tanaka, Y.; Nagai, Y.; Iwakura, Y.; Endo, Y.; Sugawara, S. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice. J. Nutr. 2009, 139, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Sakurai-Yageta, M.; Mashimo, Y.; Kuroishi, T.; Ishihara, R.; Shimojo, N.; Kohno, Y.; Okamoto, Y.; Hata, A.; Suzuki, Y. Association between Serum Biotin Levels and Cedar Pollinosis in Japanese Schoolchildren. J. Nutr. Sci. Vitaminol. 2021, 67, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Asher, M.I.; Keil, U.; Anderson, H.R.; Beasley, R.; Crane, J.; Martinez, F.; Mitchell, E.A.; Pearce, N.; Sibbald, B.; Stewart, A.W.; et al. International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. Eur. Respir. J. 1995, 8, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Rabizadeh, S.; Sears, C. New horizons for the infectious diseases specialist: How gut microflora promote health and disease. Curr. Infect. Dis. Rep. 2008, 10, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Frick, J.S.; Autenrieth, I.B. The gut microflora and its variety of roles in health and disease. Curr. Top. Microbiol. Immunol. 2013, 358, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Madhogaria, B.; Bhowmik, P.; Kundu, A. Correlation between human gut microbiome and diseases. Infect. Med. 2022, 1, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Zhang, D.; Liu, M.; Wang, Y.; Xu, Z.X. The Impact of Gut Microbiota on Radiation-Induced Enteritis. Front. Cell. Infect. Microbiol. 2021, 11, 586392. [Google Scholar] [CrossRef] [PubMed]
- Moraitis, I.; Guiu, J.; Rubert, J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends. Endocrinol. Metab. 2023, 34, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Menees, S.; Chey, W. The gut microbiome and irritable bowel syndrome. F1000Res. 2018, 7, 1029. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.D.; Sun, N.; Canakis, A.; Park, W.Y.; Weber, H.C. Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review. J. Clin. Med. 2023, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Van Hul, M.; Cani, P.D. The gut microbiota in obesity and weight management: Microbes as friends or foe? Nat. Rev. Endocrinol. 2023, 19, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Winiarek, K.; Michalska, M.; Wardyn, W.; Guzowski, C.; Murawska, J.A.; Ziemińska, D.; Burczyk, R.; Kędziora-Kornatowska, K. Impact of Gut Microbiota on the Development of Diseases. Qual. Sport 2024, 31, 55903. [Google Scholar] [CrossRef]
- Młynarska, E.; Wasiak, J.; Gajewska, A.; Steć, G.; Jasińska, J.; Rysz, J.; Franczyk, B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management—A Narrative Review. Nutrients 2024, 16, 1938. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pramanik, J.; Goyal, N.; Chauhan, D.; Sivamaruthi, B.S.; Prajapati, B.G.; Chaiyasut, C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals 2023, 16, 565. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, Q.; Liu, Z. The relationship between gut microbiota and insomnia: A bi-directional two-sample Mendelian randomization research. Front. Cell. Infect. Microbiol. 2023, 13, 1296417. [Google Scholar] [CrossRef] [PubMed]
- Pellicciotta, M.; Rigoni, R.; Falcone, E.L.; Holland, S.M.; Villa, A.; Cassani, B. The microbiome and immunodeficiencies: Lessons from rare diseases. J. Autoimmun. 2019, 98, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Baran, K.; Jankowska, M.; Jańczyk, N.; Mędrysa, K.; Pokrzepa, J.; Presak, M.; Blecharz, G.; Szwech, J.; Pograniczny, M.; Mielzyńska, A. The role of gut microbiota in the development of autoimmune disease—A literature review. Qual. Sport 2025, 41, 60289. [Google Scholar] [CrossRef]
- Burger, E.; Gallo, R.L. Host-microbiome interactions in the holobiome of atopic dermatitis. J. Allergy. Clin. Immunol. 2023, 151, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Pantazi, A.C.; Mihai, C.M.; Balasa, A.L.; Chisnoiu, T.; Lupu, A.; Frecus, C.E.; Mihai, L.; Ungureanu, A.; Kassim, M.A.K.; Andrusca, A.; et al. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023, 15, 2529. [Google Scholar] [CrossRef] [PubMed]
- Januszkiewicz, E.; Mierzejewski, M.; Biniszewska, O.; Szczygieł, M.; Sepczuk, E.; Kleniewska, P.; Pawliczak, R. The importance of the gut microbiome in the development of allergic diseases. Pol. J. Allergol. 2023, 10, 202–209. [Google Scholar] [CrossRef]
- Pascal, M.; Perez-Gordo, M.; Caballero, T.; Escribese, M.M.; Lopez Longo, M.N.; Luengo, O.; Manso, L.; Matheu, V.; Seoane, E.; Zamorano, M.; et al. Microbiome and Allergic Diseases. Front. Immunol. 2018, 9, 1584. [Google Scholar] [CrossRef] [PubMed]
- Melli, L.C.; do Carmo-Rodrigues, M.S.; Araújo-Filho, H.B.; Solé, D.; de Morais, M.B. Intestinal microbiota and allergic diseases: A systematic review. Allergol. Immunopathol. 2016, 44, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Zubeldia-Varela, E.; Barker-Tejeda, T.C.; Obeso, D.; Villaseñor, A.; Barber, D.; Pérez-Gordo, M. Microbiome and Allergy: New Insights and Perspectives. J. Investig. Allergol. Clin. Immunol. 2022, 32, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, H.; Werner, P.; Alenius, H. Host-microbiome interactions in atopic and allergic diseases. Curr. Opin. Toxicol. 2023, 35, 100420. [Google Scholar] [CrossRef]
- Rachid, R.; Chatila, T.A. The role of the gut microbiota in food allergy. Curr. Opin. Pediatr. 2016, 28, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.B.; Cai, Y.; Zhang, H. Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies. Allergol. Immunopathol. 2017, 45, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, M.; Zhou, H.; Yang, Y.; Shen, S.; You, Y.; Xue, Z. The role of gut microbiome in the complex relationship between respiratory tract infection and asthma. Front. Microbiol. 2023, 14, 1219942. [Google Scholar] [CrossRef] [PubMed]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut-Lung Axis. Int. J. Mol. Sci. 2018, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Molina, J.; García-Marcos, L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023, 15, 486. [Google Scholar] [CrossRef] [PubMed]
- Aslam, R.; Herrles, L.; Aoun, R.; Pioskowik, A.; Pietrzyk, A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. J. Allergy Clin. Immunol. Glob. 2024, 3, 100289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Tang, J.; He, M.; He, C.; Pu, G.; Liu, L.; Sun, J. Causal associations between gut microbiota, metabolites and asthma: A two-sample Mendelian randomization study. BMC Pulm. Med. 2024, 24, 72. [Google Scholar] [CrossRef] [PubMed]
- Zajac, D.; Wojciechowski, P. The Role of Vitamins in the Pathogenesis of Asthma. Int. J. Mol. Sci. 2023, 24, 8574. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F.; DiNicolantonio, J.J.; Lerner, A. Review–Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J. Asthma. Allergy 2021, 14, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Dupont, L.L.; Glynos, C.; Bracke, K.R.; Brouckaert, P.; Brusselle, G.G. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Pulm. Pharmacol. Ther. 2014, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Papapetropoulos, A.; Simoes, D.C.; Xanthou, G.; Roussos, C.; Gratziou, C. Soluble guanylyl cyclase expression is reduced in allergic asthma. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2006, 290, L179–L184. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Martins, M.A.; Tibério, I.F. Nitric oxide in asthma physiopathology. ISRN Allergy 2011, 2011, 832560. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Khatri, S.B.; Tejwani, V. Measuring exhaled nitric oxide when diagnosing and managing asthma. Cleve. Clin. J. Med. 2023, 90, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Erzurum, S.C. Nitric oxide metabolism in asthma pathophysiology. Biochim. Biophys. Acta 2011, 1810, 1008–10016. [Google Scholar] [CrossRef] [PubMed]
- Shamsuddin, A.M.; Harris, C.C. Improved enzyme immunoassays using biotin-avidin-enzyme complex. Arch. Pathol. Lab. Med. 1983, 107, 514–517. [Google Scholar] [PubMed]
- Wilchek, M.; Bayer, E.A. The avidin-biotin complex in immunology. Immunol. Today 1984, 5, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Bratthauer, G.L. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods. Mol. Biol. 2010, 588, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Lesch, H.P.; Kaikkonen, M.U.; Pikkarainen, J.T.; Ylä-Herttuala, S. Avidin-biotin technology in targeted therapy. Expert. Opin. Drug. Deliv. 2010, 7, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Alhajj, M.; Zubair, M.; Farhana, A. Enzyme Linked Immunosorbent Assay. In StatPearls [Internet]; Updated 23 April 2023; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555922/ (accessed on 16 June 2025).
- Chu, Y.W.; Wang, B.Y.; Lin, H.S.; Lin, T.Y.; Hung, Y.J.; Engebretson, D.A.; Lee, W.; Carey, J.R. Layer by layer assembly of biotinylated protein networks for signal amplification. Chem. Commun. 2013, 49, 2397–2399. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Plebani, P. Biotin interference on immunoassay methods: Sporadic cases or hidden epidemic? Clin. Chem. Lab. Med. 2017, 55, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ferguson, A.; Cervinski, M.A.; Lynch, K.L.; Kyle, P.B. AACC Guidance Document on Biotin Interference in Laboratory Tests. J. Appl. Lab. Med. 2020, 5, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Avery, G. Biotin interference in immunoassay: A review for the laboratory scientist. Ann. Clin. Biochem. 2019, 56, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wagar, E.A.; Meng, Q.H. Comprehensive assessment of biotin interference in immunoassays. Clin. Chim. Acta 2018, 487, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Strilić, D.Z.; Stanimirov, B.G.; Đanić, M.P. Biotin Interference with Laboratory Test Results. Hosp. Pharmacol. 2024, 11, 1509–1528. [Google Scholar] [CrossRef]
- Kabiri, P.; Weiskirchen, R.; van Helden, J. The biotin interference within interference suppressed immunoassays. J. Clin. Lab. Anal. 2021, 35, e23940. [Google Scholar] [CrossRef] [PubMed]
- Balieiro Neto, G.; Engracia Filho, J.R.; Budino, F.E.L.; Freitas, A.W.P.; Soares, W.V.B. Effects of High-Biotin Sample Interference on Antibody Concentrations in Sandwich Immunoassays. Vaccines 2023, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Wolf, B. High doses of biotin can interfere with immunoassays that use biotin-strept(avidin) technologies: Implications for individuals with biotin-responsive inherited metabolic disorders. Mol. Genet. Metab. 2019, 127, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Piketty, M.L.; Polak, M.; Flechtner, I.; Gonzales-Briceño, L.; Souberbielle, J.C. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: The problem of biotin intake and related interferences. Clin. Chem. Lab. Med. 2017, 55, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A. Immunoassay design and biotin interference. Adv. Clin. Chem. 2022, 109, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Scheib, N.; Bauersachs, D.; Pogorelov, D.; Heinrich, C.M.; Hefeng, F.Q.; Bindslev-Jensen, C.; Skevaki, C.; Ollert, M. Biotin interference can cause false-negative specific IgE results in patients with anaphylaxis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2459–2462.e2. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.W.; Samarasinghe, S.; Emanuele, M.A.; Meah, F. Biotin Interference in Clinical Immunoassays: A Cause for Concern. Arch. Pathol. Lab. Med. 2017, 141, 1459–1460, Erratum in Arch. Pathol. Lab. Med. 2018, 142, 10. [Google Scholar] [CrossRef] [PubMed]
- Gifford, J.L.; de Koning, L.; Sadrzadeh, S.M.H. Strategies for mitigating risk posed by biotin interference on clinical immunoassays. Clin. Biochem. 2019, 65, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Lipner, S.R. Update on biotin therapy in dermatology: Time for a change. J. Drugs Dermatol. 2020, 19, 1264–1265. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.; Benavides, R.; Colón-Franco, J.M.; Katzman, B.M.; Muthukumar, A.; Sadrzadeh, H.; Straseski, J.; Klause, U.; Tran, N. Best practices in mitigating the risk of biotin interference with laboratory testing. Clin. Biochem. 2019, 74, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, S.; Meah, F.; Singh, V.; Basit, A.; Emanuele, N.; Emanuele, M.A.; Mazhari, A.; Holmes, E.W. Biotin interference with routine clinical immunoassays: Understand the causes and mitigate the risks. Endocr. Pract. 2017, 23, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, H.M.; Korpi-Steiner, N. Characterization of biotin interference in 21 Vitros 5600 immunoassays and risk mitigation for patient safety at a large academic medical center. Clin. Biochem. 2020, 75, 53–61. [Google Scholar] [CrossRef] [PubMed]
Food Product | Biotin Content [ng/g] |
---|---|
Eggs, milk, dairy products | |
Hens egg whole (cooked) * | 214 |
Hens egg white (cooked) * | 58 |
Hens egg yolk (cooked) * | 272 |
Cow milk (2% fat) | 1.13 |
Cheddar cheese | 14 |
Meat and fish | |
Chicken liver (fried) | 1872 |
Beef liver (fried) | 416 |
Turkey ham | 7.3 |
Salmon (water-cured) | 59 |
Tuna (water-cured) | 6.82 |
Fruits and vegetables (fresh and processed) | |
Strawberries (fresh) | 15 |
Avocados (fresh) | 9.61 |
Raisins | 3.91 |
Raspberries (fresh) | 1.78 |
Bananas (fresh) | 1.33 |
Orange (fresh) | 0.49 |
Orange juice (reconstituted from concentrate) | 4.13 |
Apple (fresh) | 0.2 |
Apple juice (reconstituted from concentrate) | 0.52 |
Sweet potatoes (cooked) | 14.5 |
Broccoli (fresh) | 9.43 |
Spinach (frozen) | 7.05 |
Tomatoes (fresh) | 7.01 |
Carrots (canned) | 6.22 |
Cauliflower (fresh) | 1.61 |
Mushrooms and yeast | |
Mushrooms (canned) | 21.6 |
Yeast | 202 |
Nuts and seeds | |
Peanuts (roasted, salted) | 175 |
Pecans (fresh) | 20 |
Almonds (roasted, salted) | 44.07 |
Walnuts (fresh) | 25.9 |
Sunflower seeds (roasted, salted) | 78 |
Cereals and bread | |
Oat flakes | 1.91 |
Whole grain bread | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis, K. Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics. Nutrients 2025, 17, 2423. https://doi.org/10.3390/nu17152423
Lis K. Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics. Nutrients. 2025; 17(15):2423. https://doi.org/10.3390/nu17152423
Chicago/Turabian StyleLis, Kinga. 2025. "Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics" Nutrients 17, no. 15: 2423. https://doi.org/10.3390/nu17152423
APA StyleLis, K. (2025). Biotin Supplementation—The Cause of Hypersensitivity and Significant Interference in Allergy Diagnostics. Nutrients, 17(15), 2423. https://doi.org/10.3390/nu17152423