RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis
Simple Summary
Abstract
1. RAS Introduction
2. RAS Superfamily: Evolutionary Conservation and Functional Diversification Across Species
RAS Gene Mutations and Ras Protein Regulation
3. RAS Transforming Properties: From Genes to Proteins
4. RAS and Insulin Receptor
5. Other Ras Protein Interactions
6. Ras, Membrane Proteins, and Membrane Potential
7. Ras and Microbe Connection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- When We Catch Cancer Early, We Knock it out Three-Fourths of the Time. But Despite Having Spent $250 Billion on Cures, Stage Three and Four Patients’ Chances of Survival are no Better Today than in 1930. Cancer Evol. Symp. Zoom. 14–16 October 2020. Available online: https://cancerevolution.org/ (accessed on 21 July 2025).
- Bos, J.L. Ras oncogenes in human cancer: A review. Cancer Res. 1989, 49, 4682–4689. [Google Scholar]
- Bishop, J.M. Molecular themes in oncogenesis. Cell 1991, 64, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Tailor, K.; Paul, J.; Ghosh, S.; Kumari, N.; Kwabi-Addo, B. RASAL2 suppresses the proliferative and invasive ability of PC3 prostate cancer cells. Oncotarget 2021, 12, 2489–2499. [Google Scholar] [CrossRef] [PubMed]
- Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The frequency of Ras mutations in cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef]
- Sealover, N.E.; Kortum, R.L. Heterogeneity in RAS mutations: One size does not fit all. Sci. Signal 2022, 15, eadc9816. [Google Scholar] [CrossRef]
- Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 2014, 13, 828–851. [Google Scholar] [CrossRef]
- Boeck, S.; Heinemann, V. The role of liquid biopsies in the clinical management of advanced pancreatic cancer. Cancer Med. 2021, 10, 5047–5055. [Google Scholar]
- Lemoine, N.R.; Mayall, E.S.; Wyllie, F.S.; Williams, E.D.; Goyns, M.; Stringer, B.; Wynford-Thomas, D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 1989, 4, 159–164. [Google Scholar]
- Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: Current strategies and emerging opportunities. J. Exp. Clin. Cancer Res. 2018, 37, 57. [Google Scholar] [CrossRef]
- Braun, B.S.; Shannon, K. Targeting Ras in myeloid leukemias. Clin. Cancer Res. 2008, 14, 2249–2252. [Google Scholar] [CrossRef]
- Nusrat, F.; Khanna, A.; Jain, A.; Jiang, W.; Lavu, H.; Yeo, C.J.; Bowne, W.; Nevler, A. The clinical implications of KRAS mutations and variant allele frequencies in pancreatic ductal adenocarcinoma. J. Clin. Med. 2024, 13, 2103. [Google Scholar] [CrossRef] [PubMed]
- Heriyanto, D.S.; Laiman, V.; Limantara, N.V.; Anantawikrama, W.P.; Yuliani, F.S.; Cempaka, R.; Anwar, S.L. High frequency of KRAS and EGFR mutation profiles in BRAF-negative thyroid carcinomas in Indonesia. BMC Res. Notes 2022, 15, 369. [Google Scholar] [CrossRef] [PubMed]
- El Asri, A.; Zarrouq, B.; El Kinany, K.; Bouguenouch, L.; Ouldim, K.; El Rhazi, K. Associations between nutritional factors and KRAS mutations in colorectal cancer: A systematic review. BMC Cancer 2020, 20, 696. [Google Scholar] [CrossRef] [PubMed]
- Dinu, D.; Dobre, M.; Panaitescu, E.; Bîrlă, R.; Iosif, C.; Hoara, P.; Caragui, A.; Boeriu, M.; Constantinoiu, S.; Ardeleanu, C. Prognostic significance of KRAS gene mutations in colorectal cancer—Preliminary study. J. Med. Life 2014, 7, 581–587. [Google Scholar]
- Westra, W.H.; Slebos, R.J.; Offerhaus, G.J.; Goodman, S.N.; Evers, S.G.; Kensler, T.W.; Askin, F.B.; Rodenhuis, S.; Hruban, R.H. K-ras oncogene activation in lung adenocarcinomas from former smokers. Evidence that K-ras mutations are an early and irreversible event in the development of adenocarcinoma of the lung. Cancer 1993, 72, 432–438. [Google Scholar] [CrossRef]
- Alawieh, D.; Cysique-Foinlan, L.; Willekens, C.; Renneville, A. RAS mutations in myeloid malignancies: Revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J. 2024, 14, 72. [Google Scholar] [CrossRef]
- Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592. [Google Scholar] [CrossRef]
- Jain, R.K. Antiangiogenesis strategies revisited: From trial failures to trial successes. Oncogene 2021, 40, 4829–4844. [Google Scholar]
- Shi, Y.; Lammers, T. Combining nanomedicine and Immunotherapy. Acc. Chem. Res. 2021, 54, 3117–3127. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Junttila, M.R.; De Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 21, 687–692. [Google Scholar] [CrossRef]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.S.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 1, S185–S198. [Google Scholar] [CrossRef]
- Pitt, J.M.; Vétizou, M.; Daillère, R.; Roberti, M.P.; Yamazaki, T.; Routy, B.; Lepage, P.; Boneca, I.G.; Chamaillard, M.; Kroemer, G.; et al. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity 2016, 44, 1255–1269. [Google Scholar] [CrossRef]
- Turajlic, S.; Sottoriva, A.; Graham, T.; Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 2021, 22, 231–247. [Google Scholar] [CrossRef]
- Greaves, M. Evolutionary determinants of cancer. Science 2021, 373, 735–741. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ in Cancer. Cell 2021, 184, 3061–3076. [Google Scholar] [CrossRef]
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging biological principles of metastasis. Cell 2021, 184, 1862–1877. [Google Scholar] [CrossRef]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballar, J.A.; et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020, 10, 54–71. [Google Scholar] [CrossRef]
- Fell, J.B.; Fischer, J.P.; Baer, B.R.; Blake, J.F.; Bouhana, K.; Briere, D.M.; Brown, K.D.; Burgess, L.E.; Burns, A.C.; Burkard, M.R.; et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. J. Med. Chem. 2020, 63, 6679–6693. [Google Scholar] [CrossRef]
- Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer 2021, 21, 280–300. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.N.; Niederst, M.J.; Archibald, H.L.; Gomez-Caraballo, M.; Siddiqui, F.M.; Mulvey, H.E.; Maruvka, Y.E.; Ji, F.; Bhang, H.E.; Krishnamurthy Radhakrishna, K.V.; et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 2021, 27, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Balmain, A.; Counter, C.M. Genetic interactions in human cancer. Nat. Rev. Genet. 2022, 23, 45–56. [Google Scholar]
- Papke, B.; Der, C.J. Drugging RAS: Know the enemy. Science 2021, 373, 330–1331. [Google Scholar] [CrossRef]
- Editorial. Animal research is not always king: Researchers should explore the alternatives. Nature 2024, 631, 481. [Google Scholar] [CrossRef]
- Hartung, T. The (Misleading) role of animal models in drug development. Front. Drug Discov. 2024, 4, 1355044. [Google Scholar] [CrossRef]
- Vail, D.M.; Thamm, D.H. Spontaneously occurring tumors in companion animals as models for drug development. In Anticancer Drug Development Guide. Cancer Drug Discovery and Development, 2nd ed.; Teicher, B.A., Andrews, P.A., Eds.; Humana Press: Totowa, NJ, USA, 2004; pp. 197–213. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Abdolahi, S.; Ghazvinian, Z.; Muhammadnejad, S.; Saleh, M.; Aghdaei, H.A.; Bahaei, K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J. Transl. Med. 2022, 20, 206. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Cheng, P.; Huang, Q.; Hu, J.; Huang, L.; Hu, G. Immunocytes interact directly with cancer cells in the tumor microenvironment: One coin with two sides and future perspectives. Front. Immunol. 2024, 15, 1388176. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Pernot, S.; Evrard, S.; Khatib, A.-M. The give-and-take interaction between the tumor microenvironment and immune cells regulating tumor progression and repression. Front. Immunol. 2022, 13, 850856. [Google Scholar] [CrossRef]
- 3 Things to Know About the Tumor Microenvironment. Available online: https://www.mdanderson.org/cancerwise/what-is-the-tumor-microenvironment-3-things-to-know.h00-159460056.html (accessed on 8 April 2025).
- Burton, E.M.; Amaria, R.N.; Cascone, T.; Chalabi, M.; Gross, N.D.; Mittendorf, E.A.; Scolyer, R.A.; Sharma, P.; Ascierto, P.A. Neoadjuvant immunotherapy across cancers: Meeting report from the Immunotherapy Bridge—December 11st-2nd, 2021. J. Transl. Med. 2022, 20, 271. [Google Scholar] [CrossRef]
- Massagué, J.; Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021, 11, 971–994. [Google Scholar] [CrossRef]
- Soufizadeh, P.; Mansouri, V.; Ahmadbeigi, N. A review of animal models utilized in preclinical studies of approved gene therapy products: Trends and insights. Lab. Anim. Res. 2024, 40, 17. [Google Scholar] [CrossRef]
- Wennerberg, K.; Rossman, K.L.; Der, C.J. The Ras superfamily at a glance. J. Cell Sci. 2005, 118, 843–846. [Google Scholar] [CrossRef]
- Cherfils, J.; Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 2013, 93, 269–309. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Downward, J. Targeting RAS signalling pathway in cancer therapy. Nat. Rev. Cancer 2003, 3, 11–22. [Google Scholar] [CrossRef]
- Goitre, L.; Trapani, E.; Trabalzini, L.; Retta, S.F. The Ras superfamily of small GTPases: The Unlocked Secrets. In Ras Signaling; Methods in Molecular Biology; Trabalzini, L., Retta, S., Eds.; Humana Press: Totowa, NJ, USA, 2014; Volume 1120, pp. 1–18. [Google Scholar]
- Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, 250, RE13. [Google Scholar] [CrossRef]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.D.; Der, C.J. Ras history: The saga continues. Small GTPases 2010, 1, 2–27. [Google Scholar] [CrossRef]
- Qu, L.; Pan, C.; He, S.M.; Lang, B.; Gao, G.D.; Wang, X.L. The Ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front. Mol. Neurosci. 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.L.; Rehmann, H.; Wittinghofer, A. GEFs and GAPs: Critical elements in the control of small G proteins. Cell 2007, 129, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.M.; Fuentes, G.; Rausell, A.; Valencia, A. The Ras protein superfamily: Evolutionary tree and role of conserved amino acids. J. Cell Biol. 2012, 196, 189–201. [Google Scholar] [CrossRef]
- Harvey, J.J. An unidentified virus which causes the rapid production of tumours in mice. Nature 1964, 204, 1104–1105. [Google Scholar] [CrossRef]
- Kirsten, W.H.; Mayer, L.A. Morphologic responses to a murine erythroblastosis virus. J. Natl. Cancer Inst. 1967, 39, 311–335. [Google Scholar]
- Parada, L.F.; Tabin, C.J.; Shih, C.; Weinberg, R.A.; Human, E.J. Bladder carcinoma oncogene is homologue of Harvey Sarcoma Virus Ras gene. Nature 1982, 297, 474–478. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, Y.H.; Jao, S.W.; Lu, C.Y.; Kuo, C.H.; Hu, H.M.; Hsieh, J.S.; Chong, I.W.; Cheng, T.L.; Lin, S.R. Molecular mechanisms underlying the tumorigenesis of colorectal adenomas: Correlation to activated K-Ras oncogene. Oncol. Rep. 2006, 16, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.B.; Broz, S.D.; Levinson, A. Expression of the H-Ras proto-oncogene is controlled by alternative splicing. Cell 1989, 58, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, T. Two sequence-specific binding proteins from the promoter region on the c-Ha-ras-I oncogene. Biochem. Genet. 1989, 27, 95–402. [Google Scholar] [CrossRef]
- Scolnick, E.M.; Papageorge, A.G.; Shih, T.Y. Guanine nucleotide-binding activity as an assay for Src protein of rat-derived murine sarcoma virus. Proc. Natl. Acad. Sci. USA 1979, 76, 5355–5359. [Google Scholar] [CrossRef]
- Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299–1304. [Google Scholar] [CrossRef]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef]
- Calvisi, D.F.; Ladu, S.; Conner, E.A.; Seo, D.; Hsieh, J.T.; Factor, V.M.; Thorgeirsson, S.S. Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J. Hepatol. 2011, 54, 311–319. [Google Scholar] [CrossRef]
- Cuevas-Navarro, A.; Pourfarjam, Y.; Hu, F.; Rodriguez, D.J.; Vides, A.; Sang, B.; Fan, S.; Goldgur, Y.; de Stanchina, E.; Lito, P. Pharmacological restoration of GTP hydrolysis by mutant RAS. Nature 2025, 637, 224–229. [Google Scholar] [CrossRef]
- Brock, E.J.; Ji, K.; Reiners, J.J.; Mattingly, R.R. How to target activated Ras proteins: Direct inhibition vs. induced mislocalization. Mini Rev. Med. Chem. 2016, 16, 358–369. [Google Scholar] [CrossRef]
- Menyhárd, D.K.; Pálfy, G.; Orgován, Z.; Vida, I.; Keserű, G.M.; Perczel, A. Structural impact of GTP binding on downstream KRAS signaling. Chem. Sci. 2020, 11, 9272–9289. [Google Scholar] [CrossRef]
- Cox, A.D.; Der, C.J. Filling in the GAPs in understanding RAS. Science 2021, 374, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F.; Magee, A.I.; Childs, J.E.; Marshall, C.J. All Ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989, 57, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, B.M.; Norris, K.; Papageorge, A.G.; Hubbert, N.L.; Lowy, D.R. Harvey murine Sarcoma Virus p21 Ras protein: Biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 1984, 3, 2581–2585. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.G.; Esposito, D.; Bagni, R.K.; McCormick, F. Dragging Ras back in the ring. Cancer Cell 2014, 25, 272–281. [Google Scholar] [CrossRef]
- Hancock, J.F.; Cadwallader, K.; Marshall, C.J. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21 K-ras(B). EMBO J. 1991, 10, 641–646. [Google Scholar] [CrossRef]
- Hancock, J.F.; Parton, R.G. Ras plasma membrane signaling platforms. Biochem. J. 2005, 389, 1–11. [Google Scholar] [CrossRef]
- Hancock, J. Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol. 2003, 4, 373–384. [Google Scholar] [CrossRef]
- Apolloni, A.; Prior, I.A.; Lindsay, M.; Parton, R.G.; Hancock, J.F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell Bio 2000, 20, 2475–2487. [Google Scholar] [CrossRef]
- Roy, S.; Wyse, B.; Hancock, J.F. H-ras signaling and cell cycle regulation. Cell Cycle 2005, 4, 621–624. [Google Scholar]
- Barbacid, M. Ras Genes. Ann. Rev. Biochem. 1987, 56, 779–827. [Google Scholar] [CrossRef]
- Lowy, D.R.; Willumsen, B.M. Function and regulation of ras. Ann. Rev. Biochem. 1993, 62, 851–891. [Google Scholar] [CrossRef]
- Downward, J. Control of ras activation in mammalian cells. Curr. Opin. Cell Biol. 1996, 8, 225–230. [Google Scholar]
- Santos, E.; Nebreda, A.R. Structural and functional properties of Ras protein. FASEB J. 1989, 3, 2151–2163. [Google Scholar] [CrossRef]
- Kato, K.; Cox, A.D. Ras family proteins and their regulators: Structural insights into the role of conformational states. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 151–192. [Google Scholar]
- LaCour, T.F.; Nyborg, J.; Thirup, S.; Clark, B.F. Structural details of binding of guanosine diphosphate to elongation factor Tu from E. coil as studied by X-ray crystallography. EMBO J. 1985, 4, 2385–2388. [Google Scholar] [CrossRef]
- Milburn, M.V.; Tong, L.; deVos, A.M.; Brünger, A.; Yamaizumi, Z.; Nishimura, S.; Kim, S.H. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science 1990, 247, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Pai, E.F.; Krengel, U.; Petsko, G.A.; Goody, R.S.; Kabsch, W.; Wittinghofer, A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: Implications for the mechanism of GTP hydrolysis. EMBO J. 1990, 9, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, S.M.; Papageorge, A.G.; Kung, H.F.; Bekesi, E.; Robins, T.; Johnsen, M.; Vass, W.C.; Lowy, D.R. Mutational analysis of a Ras catalytic domain. Mol. Cell Biol. 1986, 6, 2646–2654. [Google Scholar]
- Sigal, I.S.; Gibbs, J.B.; D’Alonzo, J.S.; Scolnick, E.M. Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc. Natl. Acad. Sci. USA 1986, 8303, 4725–4729. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef]
- Tsuchida, M.; Ohtsubo, E.; Ryder, T. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten Murine Sarcoma Virus. Science 1982, 217, 937–939. [Google Scholar] [CrossRef]
- Fasano, O.; Aldrich, T.; Tamanoi, F.; Taparowsky, E.; Furth, M.; Wigler, M. Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc. Natl. Acad. Sci. USA 1984, 81, 4008–4012. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Clark, S.G.; Levinson, A.D. The oncogenic activation of human p21-ras by novel mechanism. Science 1986, 233, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Buchmann, A.; Balmain, A. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression. Proc. Natl. Acad. Sci. USA 1990, 87, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, E.W.; Diamond, L.E.; Sloan, S.R.; Corominas, M.; Guerrero, I.; Pellicer, A. Radiation and chemical activation of Ras oncogenes in different mouse strains. Environ. Health Perspect. 1989, 81, 33–37. [Google Scholar] [CrossRef]
- Yang, M.; Nickerson, S.; Kim, E.T.; Liot, C.; Laurent, G.; Spang, R.; Philips, M.; Shan, Y.; Shaw, D.; Bar-Sagi, D.; et al. Regulation of RAS oncogenicity by acetylation. Proc. Natl. Acad. Sci. USA 2012, 107, 10848. [Google Scholar] [CrossRef]
- Aviel-Ronen, S.; Blackhall, F.H.; Shephard, F.A.; Tao, M.S. K-Ras in non-small-cell lung carcinoma: A review. Clin. Lung Cancer 2006, 8, 30–38. [Google Scholar] [CrossRef]
- Carr, R.M.; Vorobyev, D.; Lasho, T.; Marks, D.L.; Tolosa, E.J.; Vedder, A.; Almada, L.L.; Yurcheko, A.; Padioleau, I.; Alver, B.; et al. RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nat. Commun. 2021, 12, 2901. [Google Scholar] [CrossRef]
- Kumar, M.S.; Hancock, D.C.; Molina-Arcas, M.; Steckel, M.; East, P.; Diefenbacher, M.; Armenteros-Monterroso, E.; Lassailly, F.; Matthews, N.; Nye, E.; et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 2012, 149, 642–655. [Google Scholar] [CrossRef]
- Jo, H.; Zhang, R.; Zhang, H.; McKinsey, T.A.; Shao, J.; Beauchamp, R.D.; Ballard, D.W.; Liang, P. NF-Kappa B is Required for H-Ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene 2000, 19, 841–849. [Google Scholar] [CrossRef]
- Pollack, Y.; Stein, R.; Razin, A.; Cedar, H. Methylation of foreign DNA sequences in eukaryotic cells. Proc. Natl. Acad. Sci. USA 1980, 77, 6463–6467. [Google Scholar] [CrossRef]
- De Vos, A.M.; Tong, L.; Milburn, M.V.; Matias, P.M.; Jancarik, J.; Noguchi, S.; Nishimura, S.; Miura, K.; Othsuka, E.; Kim, S.H. Three-dimensional structure of an oncogenic protein: Catalytic domain of human c-H-ras p21. Science 1988, 239, 888–893. [Google Scholar] [CrossRef]
- Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012, 72, 2457–2467. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Maldonado, C.; Zimmer, Y.; Medová, M.A. Comparative analysis of Individual RAS mutations in cancer biology. Front. Oncol. 2019. 9, 1088. [CrossRef]
- Tolani, B.; Celli, A.; Yao, Y.; Tan, Y.Z.; Fetter, R.; Liem, C.R.; de Smith, A.J.; Vasanthakumar, T.; Bisignano, P.; Cotton, A.D.; et al. Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Nat. Biotechnol. 2022, 40, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Peng, X.; Du, J.X.; Boohaker, R.; Estevao, I.L.; Grajeda, B.I.; Cox, M.B.; Almeida, I.C.; Lu, W. Oncogenic KRASG12D Reprograms lipid metabolism by upregulating SLC25A1 to drive pancreatic tumorigenesis. Cancer Res. 2023, 83, 3739–3752. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.M.; Der, C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harbor Perspect. Med. 2018, 8, a031435. [Google Scholar] [CrossRef]
- Huynh, M.V.; Hobbs, G.A.; Schaefer, A.; Pierobon, M.; Carey, L.M.; Diehl, J.N.; DeLiberty, J.M.; Thurman, R.D.; Cooke, A.R.; Goodwin, C.M.; et al. Functional and biological heterogeneity of KRASQ61 mutations. Sci. Signal 2022, 15, eabn2694. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Chhoeu, C.; Li, J.; Price, K.S.; Kiedrowski, L.A.; Hutchins, J.L.; Hardin, A.I.; Wei, Z.; Hong, F.; Bahcall, M.; et al. Silent mutations reveal therapeutic vulnerability in RAS Q61 cancers. Nature 2022, 603, 335–342. [Google Scholar] [CrossRef]
- Supek, F.; Miñana, B.; Valcárcel, J.; Gabaldón, T.; Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 2014, 156, 1324–1335. [Google Scholar] [CrossRef]
- COSMIC Release v92. Available online: https://cosmic-blog.sanger.ac.uk/cosmic-release-v92/ (accessed on 9 April 2025).
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.G.; Thompson, C.B. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes. Dev. 2009, 23, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Carel, K.; Kummer, J.L.; Schubert, C.; Leitner, W.; Heidenreich, K.A.; Draznin, B. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J. Biol. Chem. 1996, 271, 30625–30630. [Google Scholar] [CrossRef]
- Kozma, L.; Baltensperger, K.; Klarlund, J.; Porras, A.; Santos, E.; Czech, M.P. The Ras signaling pathway mimics insulin action on glucose transporter translocation. Proc. Natl. Acad. Sci. USA 1993, 90, 4460–4464. [Google Scholar] [CrossRef]
- Mor, A.; Aizman, E.; George, J.; Kloog, Y. Ras inhibition induces insulin sensitivity and glucose uptake. PLoS ONE 2011, 6, e21712. [Google Scholar] [CrossRef]
- Norton, L. The Insulin Signaling Pathway. Available online: https://www.antibodies.com/resources/insulin-signaling-pathway?utm_source=chatgpt.com (accessed on 9 April 2025).
- Burgering, B.M.; Medema, R.H.; Maassen, J.A.; Van de Wetering, M.L.; Van der Elb, A.J.; McCormick, F.; Bos, J.L. Insulin stimulation of gene expression mediated by p21 Ras activation. EMBO J. 1991, 10, 1103–1109. [Google Scholar] [CrossRef]
- Maassen, J.A.; Burgering, B.M.; Medema, R.H.; Osterop, A.P.; van der Zon, G.C.; Möller, W.; Bos, J.L. The role of ras proteins in insulin signal transduction. Horm. Metab. Res. 1992, 24, 214–218. [Google Scholar] [CrossRef]
- LeRoith, D.; Novosyadlyy, R.; Gallagher, E.J.; Lann, D.; Vijayakumar, A.; Yakar, S. Obesity and Type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; Epidemiological and mechanistic evidence. Exp. Clin. Endocrinol. Diabetes 2008, 116, S4–S6. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signaling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Bio 2006, 7, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17, 1027–1035. [Google Scholar] [CrossRef]
- Benito, M.; Porras, A.; Nebreda, A.R.; Santos, E. Differentiation of 3T3-LI fibroblasts to adipocytes induced by transfection on Ras oncogenes. Science 1991, 253, 565–568. [Google Scholar] [CrossRef]
- Karnoub, A.E.; Weinberg, R.A. Ras oncogenes: Split personalities. Nat. Rev. Mol. Cell Biol. 2008, 9, 517–531. [Google Scholar] [CrossRef]
- Bryant, K.L.; Mancias, J.D.; Kimmelman, A.C.; Der, C.J. KRAS: Feeding pancreatic cancer proliferation. Trends Biochem. Sci. 2014, 39, 91–100. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef]
- Kimmelman, A.C. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 2015, 21, 1828–1834. [Google Scholar] [CrossRef]
- Herreros, A.G.; Dominguez, I.; Diaz-Meco, M.T.; Graziani, G.; Cornet, M.E.; Guddal, P.H.; Johansen, T.; Moscat, J. Requirement of Phospholipase C-catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and Ras p21. J. Biol. Chem. 1991, 266, 6825–6829. [Google Scholar] [CrossRef]
- Buchanan, F.G.; McReynolds, M.; Couvillon, A.; Kam, Y.; Holla, V.R.; Dubois, R.N.; Exton, J.H. Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc. Natl. Acad. Sci. USA 2005, 102, 1638–1642. [Google Scholar] [CrossRef] [PubMed]
- Daar, I.; Nebreda, A.R.; Yew, N.; Sass, P.; Paules, R.; Santos, E.; Wigler, M.; Vande Woude, G.F. The Ras oncoprotein and M-phase activity. Science 1991, 253, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.I. GI-Specific Cyclins: In Search of an S-phase Promoting Factor. Trends Genet. 1991, 7, 95–99. [Google Scholar] [CrossRef]
- Ruggleri, R.; McCormick, F. Ras and the Awd Couple. Nature 1991, 353, 390–391. [Google Scholar] [CrossRef]
- Teng, D.H.; Engele, C.M.; Venkatesh, T. A product of the prune locus of Drosophila is similar to mammalian GTPase-activity protein. Nature 1991, 353, 437–440. [Google Scholar] [CrossRef]
- Huang, M.; Chida, K.; Kamata, N.; Nose, K.; Kato, M.; Homma, Y.; Takenawa, T.; Kuroki, T. Enhancement of inositol phospholipid metabolism and activation of protein kinase C in Ras-transformed rat fibroblasts. J. Biol. Chem. 1988, 263, 17975–17980. [Google Scholar] [CrossRef]
- Chiarugi, V.; Bruni, P.; Pasquall, F.; Magnelli, L.; Basi, G.; Ruggiero, M.; Farnararo, M. Synthesis of diacylglycerol de novo is responsible for permanent activation and down-regulation of protein kinase C in transformed cells. Biochem. Biophys. Res. Commun. 1989, 164, 816–823. [Google Scholar] [CrossRef]
- Franks, D.J.; Durkin, J.P.; Whitfield, J.F. Protein Kinase C and viral K-Ras protein cooperativity enhance the response of adenylate cyclase to stimulators. J. Cell Physiol. 1989, 140, 409–417. [Google Scholar] [CrossRef]
- Hsiao, W.L.; Housey, G.M.; Johnson, M.D.; Weinstein, I.B. Cells that overproduce Protein Kinase C are more susceptible to transformation by an activated H-Ras oncogene. Mol. Cell Biol. 1989, 9, 2641–2647. [Google Scholar] [CrossRef]
- Spina, A.; Chlosi, E.; Illiano, G.; Berlingieri, M.T.; Fusco, A.; Grieco, M. Protein Kinase C activities are increased in rat-thyroid epithelial cells expressing V-Ras gene. Biochem. Biophys. Res. Commun. 1988, 157, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.L.; Tsai, M.H.; Stacey, D.W. Cellular Ras activity and phospholipid metabolism. Cell 1988, 52, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lavlada, I.; Larrodera, P.; Diaz-Meco, M.T.; Cornet, M.E.; Guddal, P.H.; Johansen, T.; Moscat, J. Evidence for a role of phosphatidylcholine-hydrolyzing Phospholipase C in the regulation of Protein Kinase C by Ras and Src oncogenes. EMBO J. 1990, 9, 3907–3912. [Google Scholar] [CrossRef] [PubMed]
- Maly, K.; Uberall, F.; Loferer, H.; Doppler, W.; Oberhuber, H.; Groner, B.; Grunicke, H.H. H-Ras Activates the Na+/H+ antiporter by a Protein Kinase C-independent mechanism. J. Biol. Chem. 1989, 264, 1183–11842. [Google Scholar] [CrossRef]
- Gauthier-Rouviere, C.; Fernandez, A.; Lamb, N.J.C. Ras-induced C-Fos expression and proliferation in living rat fibroblasts involves C-Kinase activation and the Serum Response Element Pathway. EMBO J. 1990, 90, 171–180. [Google Scholar] [CrossRef]
- Allen, J.D.; Jaffer, Z.M.; Park, S.J.; Burgin, S.; Hofmann, C.; Sells, M.A.; Chen, S.; Derr-Yellin, E.; Michels, E.G.; McDaniel, A.; et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 2009, 113, 2695–2705. [Google Scholar] [CrossRef]
- Jeon, I.S.; Kim, H.R.; Shin, E.Y.; Kim, E.G.; Han, H.S.; Hong, J.T.; Lee, K.K.; Song, K.D.; Choi, J.K. Modulation of store-operated calcium entry and nascent adhesion by p21-activated kinase 1. Exp. Mol. Med. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Elmitwalli, O.; Darwish, R.; Al-Jabery, L.; Algahiny, A.; Roy, S.; Butler, A.E.; Hasan, A.S. The emerging role of p21 in diabetes and related metabolic disorders. Int. J. Mol. Sci. 2024, 25, 13209. [Google Scholar] [CrossRef]
- Roose, J.P.; Mollenauer, M.; Gupta, V.A.; Stone, J.; Weiss, A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol. Cell Biol. 2005, 25, 4426–4441. [Google Scholar] [CrossRef]
- Benjamin, C.W.; Connor, J.A.; Tarpley, W.G.; Gorman, R.R. NIH-3T3 cells transformed by the EJ-Ras oncogene exhibit reduced platelet-derived growth Factor-Mediated Ca++ Mobilization. Proc. Natl. Acad. Sci. USA 1988, 85, 4345–4349. [Google Scholar] [CrossRef]
- Villereal, M.L.; Owen, N.E.; Vincentini, L.M.; Mix-Muldoon, L.L.; Jamieson, G.A. Mechanism for growth factor-induced increase of Na+/H+ exchange and rise in Ca2+ activity in cultured human fibroblasts. Cancer Cells 1985, 3, 417–424. [Google Scholar]
- Oberhuber, H.; Maly, K.; Uberall, F.; Hoflacher, J.; Kianl, A.; Grunicke, H.H. Mechanism of desensitization of the calcium-mobilizing system to Bombesin by Ha-Ras. J. Biol. Chem. 1991, 266, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Robbins, H.L.; Hague, A. The PI3K/Akt pathway in tumors of endocrine tissues. Front. Endocrinol. 2016, 6, 188. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Medina, B.E.; Lerma, D.; Hwang, M.; Ross, J.A.; Skouta, R.; Aguilera, R.J.; Kirken, R.A.; Varela-Ramirez, A.; Robles-Escajeda, E. Green barley mitigates cytotoxicity in human lymphocytes undergoing aggressive oxidative stress, via activation of both the Lyn/PI3K/Akt and MAPK/ERK pathways. Sci. Rep. 2019, 9, 6005. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.L.; Morton, J.P.; Manoharan, I.; Nelson, D.M.; Jamieson, N.B.; Pawlikowski, J.S.; McBryan, T.; Doyle, B.; McKay, C.; Oien, K.A.; et al. Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol. Cell 2011, 42, 36–49. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-Inducible Factor 1: Master Regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 1998, 8, 588–594. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, E.S.; You, H.J.; Lee, J.W.; Park, J.W.; Chun, Y.S. Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: A Novel Mechanism of Ras-Mediated Tumor Promotion. Oncogene 2004, 23, 9427–9431. [Google Scholar] [CrossRef]
- Field, J.; Xu, H.P.; Michaeli, T.; Ballester, R.; Sass, P.; Wigler, M.; Colicelli, J. Mutations of the adenyl cyclase gene that block Ras function in Saccharomyces cerevisiae. Science 1990, 247, 464–467. [Google Scholar] [CrossRef]
- Hall, A.; Morris, J.D.H.; Price, B.; Hancock, J.F.; Gardener, S.; Houslay, M.D.; Wakelam, M.J.O.; Marshall, C.J. The function of the mammalian Ras proteins. In The Guanine-Nucleotide Binding Proteins; Bosch, L., Kraal, B., Parmeggiani, A., Eds.; Springer: Boston, MA, USA, 1989; pp. 201–207. [Google Scholar]
- Davis, R.L.; Cherry, J.; Dauwalder, B.; Han, P.L.; Skoulakis, E. The cyclic AMP system and Drosophila learning. Mol. Cell Biochem. 1995, 149, 271–278. [Google Scholar] [CrossRef]
- Bai, Y.; Suzuki, T. Activity-dependent synaptic plasticity in Drosophila melanogaster. Front. Physiol. 2020, 11, 161. [Google Scholar] [CrossRef]
- Ridgway, A.A.G.; De Vouge, M.W.; Mukherjee, B.B. Dibutyryl cAMP Inhibits Expression of transformation-related properties in Kirsten Murine Sarcoma Virus transformed Balb/c-3T3 cells despite continued presence of p21 v-Ki-ras. Biochem. Cell Biol. 1988, 66, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Vidimar, V.; Beilhartz, G.L.; Park, M.; Biancucci, M.; Kieffer, M.B.; Gius, D.R.; Melnyk, R.A.; Satchell, K.J.F. An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proc. Natl. Acad. Sci. USA 2020, 117, 16938–16948. [Google Scholar] [CrossRef] [PubMed]
- Vidimar, V.; Melnyk, R.A.; Satchell, K.J.F. Delivering a RAS protease halts tumor growth. Oncotarget 2020, 11, 3265–3266. [Google Scholar] [CrossRef] [PubMed]
- Coghill, R. Killing Fields: The Biophysical Evidence; Electronics World + Wireless World: Sutton, UK, 1990; pp. 112–118. [Google Scholar]
- Pandiella, A.; Magni, M.; Lovisolo, D.; Meldoles, J. The effects of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations. J. Biol. Chem. 1989, 264, 12914–12921. [Google Scholar] [CrossRef]
- Lang, F.; Friedrich, F.; Kahn, E.; Woll, E.; Hammerer, M.; Waldegger, S.; Maly, K.; Grunicke, H. Bradykinin-Induced Oscillations Cell Membrane Potential in Cells Expressing the Ha-Ras Oncogene. J. Biol. Chem. 1991, 266, 4938–4942. [Google Scholar] [CrossRef]
- Prasad, K.N.; Cohrs, R.J.; Sharma, O.K. Decreased expressions of C-Myc and H-Ras oncogenes in vitamin E succinate induced morphologically differentiated murine B-16 melanoma cells in culture. Biochem. Cell Biol. 1990, 68, 1250–1255. [Google Scholar] [CrossRef]
- Koopman, G.; Reutelingsperger, C.P.; Kuijten, G.A.; Keehnen, R.M.; Pals, S.T.; van Oers, M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994, 84, 1415–1420. [Google Scholar] [CrossRef]
- Prior, I.A.; Harding, A.; Yan, J.; Sluimer, J.; Parton, R.G.; Hancock, J.F. Compartmentalized Ras signaling: A role for lipid rafts in signal transmission. Oncogene 2003, 22, 8647–8653. [Google Scholar]
- Zhou, Y.; Wong, C.O.; Cho, K.J.; van der Hoeven, D.; Liang, H.; Thakur, D.P.; Luo, J.; Babic, M.; Zinsmaier, K.E.; Zhu, M.X.; et al. Lipid signaling and membrane trafficking in RAS-driven cancers. Curr. Opin. Cell Biol. 2015, 35, 61–67. [Google Scholar]
- Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999, 401, 173–177. [Google Scholar] [CrossRef]
- Ghomashchi, F.; Palmer, D.; Liu, L.; Lane, W.; Gelb, M.H. Role of the pleckstrin homology domain in targeting phospholipase D1 to the plasma membrane. Science 1995, 268, 2040–2044. [Google Scholar]
- Zhang, Y.; Wolfman, A.; Macara, I.G. Prostaglandins regulate Ras GTPase-activating protein activity. Biochem. J. 1995, 309, 617–622. [Google Scholar]
- Zhou, Y.; Wong, C.O.; Cho, K.J.; van der Hoeven, D.; Liang, H.; Thakur, D.P.; Luo, J.; Babic, M.; Zinsmaier, K.E.; Zhu, M.X.; et al. Membrane potential modulates plasma membrane phospholipid dynamics and KRas signaling. Science 2015, 349, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; McCormick, F.; Macara, I.G. Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 1991, 252, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Mountford, C.E.; Wright, L.C. Organization of lipids in the plasma membranes of malignant and stimulated cells: A New Model. Trends Biochem. Sci. 1988, 13, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Ammala, C.; Larsson, O.; Berggren, P.O.; Bokvist, K.; Juntti-Berggren, L.; Kindmark, H.; Rorsman, P. Inositol triphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose stimulated pancreatic beta-cells. Nature 1991, 353, 849–852. [Google Scholar] [CrossRef]
- Bernier, I.; Jollès. P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim. Biophys. Acta 1984, 790, 174–181. [Google Scholar] [CrossRef]
- Schoentgen, F.; Saccoccio, F.; Jollès, J.; Bernier, I.; Jollès, P. Complete amino acid sequence of a basic 21-kDa protein from bovine brain cytosol. Eur. J. Biochem. 1987, 166, 333–338. [Google Scholar] [CrossRef]
- Seddiqi, N.; Bollengier, F.; Alliel, P.M.; Périn, J.P.; Bonnet, F.; Bucquoy, S.; Jollès, P.; Schoentgen, F. Amino acid sequence of the Homo sapiens brain 21-23-kDa protein (neuropolypeptide h3), comparison with its counterparts from Rattus norvegicus and Bos taurus species, and expression of its mRNA in different tissues. J. Mol. Evol. 1994, 39, 655–660. [Google Scholar] [CrossRef]
- Grandy, D.K.; Hanneman, E.; Bunzow, J.; Shih, M.; Machida, C.A.; Bidlack, J.M.; Civelli, O. Purification, cloning, and tissue distribution of a 23-kDa rat protein isolated by morphine affinity chromatography. Mol. Endocrinol. 1990, 4, 1370–1376. [Google Scholar] [CrossRef]
- Satake, M.; Ibaraki, T.; Yamaguchi, Y.; Ito, Y. Loss of responsiveness of an AP-Related Factor, PEBP1, to 12-O-tetradecanoyl phorbol-13-acetate after transformation of NIH 3T3 cells by the Ha-Ras oncogenes. J. Virol. 1989, 63, 3669–3677. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.T.; Fu, Z.; Yeung, K.; Brennan, M. Raf kinase inhibitor protein: A prostate cancer metastasis suppressor gene. Cancer Lett. 2004, 207, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.; Adjei, A. The Ras/Raf/MAPK Pathway. J. Thorac. Oncol. 2006, 1, 7–9. [Google Scholar] [CrossRef]
- Kranenburgm, O.; Gebbink, M.; Voest, E. Stimulation of angiogenesis by Ras proteins. Biochim. Biophys. Acta 2004, 165, 23–37. [Google Scholar]
- Lorenz, K.; Lohse, M.J.; Quitterer, U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 2003, 426, 574–579. [Google Scholar] [CrossRef]
- Hickox, D.M.; Gibbs, G.; Morrison, J.R.; Sebire, K.; Edgar, K.; Keah, H.H.; Alter, K.; Loveland, K.L.; Hearn, M.T.; de Kretser, D.M.; et al. Identification of a novel testis-specific member of the phosphatidylethanolamine binding protein family, pebp-2. Biol. Reprod. 2002, 67, 917–927. [Google Scholar] [CrossRef]
- Duesberg, P.H.; Vogt, P.K. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl. Acad. Sci. USA 1970, 67, 1673–1680. [Google Scholar] [CrossRef]
- Hobbs, A.G.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 2016, 129, 1287–1292. [Google Scholar] [CrossRef]
- Sutter, D.; Westphal, M.; Poerfler, W. Patterns of integration of viral DNA sequences in the genomes of Adenovirus Type 12-Transformed hamster cells. Cell 1978, 14, 569–585. [Google Scholar] [CrossRef]
- Desrosiers, R.C.; Mulder, C.; Fleckenstein, B. Methylation of Herpevirus saimiri DNA in lymphoid tumor cell lines. Proc. Natl. Acad. Sci. USA 1979, 76, 3839–3843. [Google Scholar] [CrossRef] [PubMed]
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2011, 412, 860–921. [Google Scholar]
- Vargiu, L.; Rodriguez-Tomé, P.; Sperber, G.O.; Cadeddu, M.; Grandi, N.; Blikstad, V.; Tramontano, E.; Blomberg, J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, X.; Xu, H.; Li, S.; Lau, H.; Chen, Q.; Zhang, B.; Zhao, L.; Chen, H.; Sung, J.; et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis. Gastroenterology 2021, 160, 2395–2408. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, S.; Splinter, P.; Trussoni, C.; Gajdos, G.; Lineswala, P.; LaRusso, N. Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. J. Biol. Chem. 2011, 286, 30352–30360. [Google Scholar] [CrossRef] [PubMed]
- Genth, H.; Junemann, J.; Lämmerhirt, C.; Lücke, A.-C.; Schelle, I.; Just, I.; Gerhard, R.; Pich, A. Difference in mono-o-glucosylation of Ras subtype GTPases between Toxin A and Toxin B from Clostridioides difficile strain 10463 and lethal toxin from Clostridium sordellii strain 6018. Front. Microbiol. 2018, 9, 3078. [Google Scholar] [CrossRef]
- Buckley, C.; Pots, H.; Gueho, A.; Vines, J.; Munn, C.; Phillips, B.; Gilsbach, B.; Traynor, D.; Nikolaev, A.; Soldati, T.; et al. Coordinated Ras and Rac activity shapes macropinocytic cups and enables phagocytosis of geometrically diverse bacteria. Curr. Biol. 2020, 30, 2912–2926. [Google Scholar] [CrossRef]
- Pignatelli, P.; Nuccio, F.; Piattelli, A.; Curia, M.C. The Role of Fusobacterium nucleatum in oral and colorectal carcinogenesis. Microorganisms 2003, 11, 2358. [Google Scholar] [CrossRef]
- Takeda, K.; Koi, M.; Okita, Y.; Sajibu, S.; Keku, T.O.; Carethers, J.M. Fusobacterium nucleatum load correlates with KRAS mutation and sessile serrated pathogenesis in colorectal adenocarcinoma. Cancer Res. Commun. 2023, 3, 1940–1951. [Google Scholar] [CrossRef]
- Wang, L.; Yu, K.; Zhang, X.; Yu, S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed. Pharmacother. 2018, 107, 177–184. [Google Scholar] [CrossRef]
- Mehta, R.S.; Nishihara, R.; Cao, Y.; Song, M.; Mima, K.; Qian, Z.; Nowak, J.; Kosumi, K.; Hamada, T.; Masugi, Y.; et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017, 3, 921–927. [Google Scholar] [CrossRef]
- Barukčić. I. Fusobacterium Nucleatum—The cause of human colorectal cancer. J. Biosci. Med. 2018, 6, 31–69. [Google Scholar]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef]
- Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 2023, 8, 156. [Google Scholar] [CrossRef]
- Zemke, N.; Berk, A. The Adenovirus E1A C terminus suppresses a delayed antiviral response and modulates RAS signaling. Cell Host Microbe 2017, 22, 789–800. [Google Scholar] [CrossRef]
- Tarn, C.; Lee, S.; Hu, Y.; Ashendel, C.; Andrisani, O. Hepatitis B Virus X protein differentially activates Ras-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J. Biol. Chem. 2011, 276, 34671–34680. [Google Scholar] [CrossRef]
- Garant, K.; Shmulevitz, M.; Pan, L.; Daigle, R.; Ahn, D.-G.; Gujar, S.; Lee, P. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016, 35, 771–782. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, W.; Chen, Y.; Zou, M.; Peng, D.; Chen, D. HIV-1 Transactivator protein induces ZO-1 and neprilysin dysfunction in brain endothelial cells via the Ras signaling pathway. Oxid. Med. Cell Longev. 2017, 2017, 3160360. [Google Scholar] [CrossRef]
- Araujo, J.; Doniger, J.; Kashanchi, F.; Hermonat, P.; Thompson, J.; Rosenthal, L. Human Herpesvirus 6A ts Suppresses Both transformation by H-Ras and transcription by the H-Ras and Human Immunodeficiency Virus Type 1 promoters. J. Virol. 1995, 69, 4933–4940. [Google Scholar] [CrossRef]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2022, 29, 875–878. [Google Scholar] [CrossRef]
- Veluswamy, R.; Mack, P.C.; Houldsworth, J.; Elkhouly, E.; Hirsch, F.R. KRAS G12C-mutant non-small cell lung cancer: Biology, Developmental Therapeutics, and Molecular Testing. J. Mol. Diagn. 2021, 23, 507–520. [Google Scholar] [CrossRef]
- Lee, A. Sotorasib: A review in KRAS G12C mutation-positive non-small cell lung cancer. Target. Oncol. 2022, 17, 727–733. [Google Scholar] [CrossRef]
- Palma, G.; Khurshid, F.; Lu, K.; Woodward, B.; Husain, H. Selective KRASG12C inhibitors in non-small cell lung cancer: Chemistry, concurrent pathway alterations, and clinical outcomes. NPJ Precis. Oncol. 2021, 5, 98. [Google Scholar] [CrossRef]
- Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013, 503, 548–551. [Google Scholar] [CrossRef]
- Rosen, E.; Drilon, A.; Chakravarty, D. ORCID logo precision oncology. Cancer Discov. 2022, 12, 2747–2753. [Google Scholar] [CrossRef]
- No author listed-Abstract: Frontline promise for Adagrasib-Pembrolizumab combination. Cancer Discov. 2023, 13, OF2. [CrossRef]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Yu, H.A.; Dowell, J.E.; Batra, U.; Spira, A.I.; et al. Adagrasib in non–small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef]
- Wang, X.; Allen, S.; Blake, J.F.; Bowcut, V.; Briere, D.M.; Calinisan, A.; Dahlke, J.R.; Fell, J.B.; Fischer, J.P.; Gunn, R.J.; et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J. Med. Chem. 2022, 65, 3123–3133. [Google Scholar] [CrossRef]
- Ji, X.; Li, Y.; Kong, X.; Chen, D.; Lu, J. Discovery of Prodrug of MRTX1133 as an oral therapy for cancers with KRASG12D mutation. ACS Omega 2023, 8, 7211–7221. [Google Scholar] [CrossRef]
- Santos, E.; Tronick, S.R.; Aaronson, S.A.; Pulciani, S.; Barbacid, M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of Balb/c Harvey sarcoma virus gene. Nature 1982, 298, 343–347. [Google Scholar] [CrossRef]
- Bourne, H.R.; Sanders, D.A.; McCormick, F. The GTPase superfamily: Conserved structure and molecular mechanism. Nature 1991, 348, 125–132. [Google Scholar] [CrossRef]
- Marshall, C.J. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 1995, 80, 179–185. [Google Scholar] [CrossRef]
- Cobb, M.H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 1999, 71, 479–500. [Google Scholar] [CrossRef]
- Johnson, L.; Greenbaum, D.; Cichowski, K.; Mercer, K.; Murphy, E.; Schmitt, E.; Bronson, R.T.; Umanoff, H.; Edelmann, W.; Kucherlapati, R.; et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes. Dev. 1997, 11, 2468–2481. [Google Scholar] [CrossRef]
- Cox, A.D.; Der, C.J. The dark side of Ras: Regulation of apoptosis. Oncogene 2003, 22, 8999–9006. [Google Scholar] [CrossRef]
- Sebolt-Leopold, J.S.; Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 2004, 4, 937–947. [Google Scholar] [CrossRef]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef]
- Lito, P.; Solomon, M.; Li, L.S.; Hansen, R.; Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 2016, 351, 604–608. [Google Scholar] [CrossRef]
- McCormick, F. KRAS as a therapeutic target. Clin. Cancer Res. 2015, 21, 1797–1801. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.G.; Denlinger, C.S.; et al. KRAS G12C inhibition with Sotorasib in advanced solid tumors. Cancer Discov. 2020, 10, 54–71. [Google Scholar] [CrossRef]
- Filis, P.; Salgkamis, D.; Matikas, A.; Zerdes, I. Breakthrough in RAS targeting with pan-RAS(ON) inhibitors RMC-7977 and RMC-6236. Drug Discov. Today 2025, 30, 104250. [Google Scholar] [CrossRef]
- Han, D.; Li, A.; Zhu, L.; Zhuang, C.; Zhao, Q.; Zou, Y. Peptide inhibitors targeting Ras and Ras-associated protein–protein interactions. Eur. J. Med. Chem. 2024, 279, 116878. [Google Scholar] [CrossRef]
- Shetu, S.A.; Bandyopadhyay, D. Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Int. J. Mol. Sci. 2022, 23, 3706. [Google Scholar] [CrossRef]
- Coley, A.B.; Ward, A.; Keeton, A.B.; Chen, X.; Maxuitenko, Y.; Prakash, A.; Li, F.; Foote, J.B.; Buchsbaum, D.J.; Piazza, G.A. Pan-RAS inhibitors: Hitting multiple RAS isozymes with one stone. Adv. Cancer Res. 2022, 153, 131–168. [Google Scholar]
- Ajikumar, A.; Lei, K.F. Microfluidic technologies in advancing cancer research. Micromachines 2024, 15, 1444. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, R.; Song, Y.; Wei, W.; Baek, D.; Gillin, M.; Kurabayashi, K.; Chen, W. Cancer-on-a-Chip for precision cancer medicine. Lab Chip 2025, 25, 2390–2408. [Google Scholar] [CrossRef]
- Aydin, H.B.; Moon, H.R.; Han, B.; Ozcelikkale, A.; Acar, A. Tumor-Microenvironment-on-Chip platform for assessing drug response in 3D dynamic culture. Methods Mol. Biol. 2024, 2764, 265–278. [Google Scholar]
- Veith, I.; Nurmik, M.; Mencattini, A.; Damei, I.; Lansche, C.; Brosseau, S.; Gropplero, G.; Corgnac, S.; Filippi, J.; Poté, N.; et al. Assessing personalized responses to anti-PD-1 treatment using patient-derived lung tumor-on-chip. Cell Rep. Med. 2024, 5, 101549. [Google Scholar] [CrossRef]
- Penarete-Acosta, D.; Stading, R.; Emerson, L.; Horn, M.; Chakraborty, S.; Han, A.; Jayaraman, A. A microfluidic co-culture model for investigating colonocytes–microbiota interactions in colorectal cancer. Lab Chip 2024, 24, 3690–3703. [Google Scholar] [CrossRef]
- Zhai, J.; Liu, Y.; Ji, W.; Huang, X.; Wang, P.; Li, Y.; Li, H.; Wong, A.H.H.; Zhou, X.; Chen, P.; et al. Drug screening on digital microfluidics for cancer precision medicine. Nat. Commun. 2024, 15, 4363. [Google Scholar] [CrossRef]
- Fu, Y.-C.; Liang, S.-B.; Luo, M.; Wang, X.-P. Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal tumor evolution. Cancer Cell Int. 2025, 25, 103. [Google Scholar] [CrossRef]
- Rhinehart, D.P.; Lai, J.; Sanin, D.E.; Vakkala, V.; Mendes, A.; Bailey, C.; Antonarakis, E.S.; Paller, C.J.; Wu, X.; Lotan, T.L.; et al. Intratumoral heterogeneity drives acquired therapy resistance in a patient with metastatic prostate cancer. NPJ Precis. Oncol. 2024, 8, 275. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, Y.; Fu, Y.; Zhang, C.; Chen, W.; Tang, X.; Yu, Y.; Chen, Y.; Ding, G.; Zhang, J. Acyl post-translational modification of proteins by metabolites in cancer cells. Cell Death Discov. 2025, 11, 247. [Google Scholar] [CrossRef] [PubMed]
- Hammond, N.G.; Cameron, R.B.; Faubert, B. Beyond glucose and Warburg: Finding the sweet spot in cancer metabolism models. npj Metab. Health Dis. 2024, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Jiang, C.H.; Li, N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef]
Cancer Type | % of Patients Carrying Kirsten RAS (KRAS) Gene Mutation * | Reference |
---|---|---|
Pancreatic | 90–92 | [13] |
Thyroid | 41.3–52.6 | [14] |
Colon | 30–50 | [15] |
Colorectal | 35–45 | [16] |
Lung | 25–50 | [17] |
Myeloid Leukemia | 10–30 | [18] |
Type | Mutation at Glutamine Residue 61 to | Cellular Effect | Frequency (%) |
---|---|---|---|
KRASQ61H | Histidine | Disrupted actin cytoskeletal organization | 57 |
KRASQ61K | Lysine | Inhibits both GAP and intrinsic GTP hydrolysis | 40 Collectively for the three mutations. |
KRASQ61L | Leucine | Disrupted actin cytoskeletal organization | |
KRASQ61R | Arginine | Disrupted actin cytoskeletal organization | |
KRASQ61P | Proline | Disrupted actin cytoskeletal organization | 2 |
KRASQ61E | Glutamic acid | Stimulated actin stress fiber formation | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDonald, R.A.; Varela-Ramirez, A.; Ashley, A.K. RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis. Biology 2025, 14, 936. https://doi.org/10.3390/biology14080936
McDonald RA, Varela-Ramirez A, Ashley AK. RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis. Biology. 2025; 14(8):936. https://doi.org/10.3390/biology14080936
Chicago/Turabian StyleMcDonald, Richard A., Armando Varela-Ramirez, and Amanda K. Ashley. 2025. "RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis" Biology 14, no. 8: 936. https://doi.org/10.3390/biology14080936
APA StyleMcDonald, R. A., Varela-Ramirez, A., & Ashley, A. K. (2025). RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis. Biology, 14(8), 936. https://doi.org/10.3390/biology14080936