Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = in vitro human brain models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4087 KiB  
Article
Intranasal Administration of Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Has Therapeutic Effect in Experimental Autoimmune Encephalomyelitis
by Barbara Rossi, Federica Virla, Gabriele Angelini, Ilaria Scambi, Alessandro Bani, Giulia Marostica, Mauro Caprioli, Daniela Anni, Roberto Furlan, Pasquina Marzola, Raffaella Mariotti, Gabriela Constantin, Bruno Bonetti and Ermanna Turano
Cells 2025, 14(15), 1172; https://doi.org/10.3390/cells14151172 - 30 Jul 2025
Viewed by 160
Abstract
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of [...] Read more.
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have clearly shown a therapeutic effect of ASCs. However, controversial data on their efficacy were obtained from I- and II-phase clinical trials in MS patients, highlighting standardization issues and limited data on long-term safety. In this context, ASC-derived extracellular vesicles from (ASC-EVs) represent a safer, more reproducible alternative for EAE and MS treatment. Moreover, their physical characteristics lend themselves to a non-invasive, efficient, and easy handling of intranasal delivery. Using an in vitro setting, we first verified ASC-EVs’ ability to cross the human nasal epithelium under an inflammatory milieu. Magnetic resonance corroborated these data in vivo in intranasally treated MOG35-55-induced EAE mice, showing a preferential accumulation of ASC-EVs in brain-inflamed lesions compared to a stochastic distribution in healthy control mice. Moreover, intranasal treatment of ASC-EVs at the EAE onset led to a long-term therapeutic effect using two different experimental protocols. A marked reduction in T cell infiltration, demyelination, axonal damage, and cytokine production were correlated to EAE amelioration in ASC-EV-treated mice compared to control mice, highlighting the immunomodulatory and neuroprotective roles exerted by ASC-EVs during EAE progression. Overall, our study paves the way for promising clinical applications of self-administered ASC-EV intranasal treatment in CNS disorders, including MS. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

16 pages, 1760 KiB  
Article
Functional Divergence of NOTCH1 and NOTCH2 in Human Cerebral Organoids Reveals Receptor-Specific Roles in Early Corticogenesis
by Sophia Yakovleva, Anastasia Knyazeva, Anastasia Yunusova, Elina Allayarova, Dmitriy Lanshakov, Anna Malashicheva and Tatiana Shnaider
Int. J. Mol. Sci. 2025, 26(15), 7309; https://doi.org/10.3390/ijms26157309 - 29 Jul 2025
Viewed by 199
Abstract
The Notch signaling pathway is a critical regulator of embryonic brain development. Among its four mammalian receptors, Notch1 and Notch2 are particularly significant in the developing cortex, yet their roles in human neurodevelopment are not well understood. In murine cortex development, Notch1 primarily [...] Read more.
The Notch signaling pathway is a critical regulator of embryonic brain development. Among its four mammalian receptors, Notch1 and Notch2 are particularly significant in the developing cortex, yet their roles in human neurodevelopment are not well understood. In murine cortex development, Notch1 primarily regulates early progenitor identity and neurogenesis, while Notch2 is required for maintaining radial glial cells at later stages. However, it is unclear whether these functions are conserved in the human developing brain. In this study, we used cerebral organoids as an in vitro model of early human corticogenesis and conducted lentiviral shRNA-mediated knockdowns of NOTCH1 and NOTCH2. Our findings indicate that NOTCH1 is essential for organoid growth, lumen morphogenesis, radial glial identity, and progenitor proliferation. In contrast, depleting NOTCH2 did not significantly affect these early developmental processes. These results demonstrate that NOTCH1 and NOTCH2 have potentially non-redundant and temporally distinct roles in early human corticogenesis, reflecting receptor-specific specialization within the Notch signaling pathway. Full article
Show Figures

Figure 1

27 pages, 6405 KiB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 457
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 303
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 429
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
21 pages, 4391 KiB  
Article
Thermal Cycling-Hyperthermia Attenuates Rotenone-Induced Cell Injury in SH-SY5Y Cells Through Heat-Activated Mechanisms
by Yu-Yi Kuo, Guan-Bo Lin, You-Ming Chen, Hsu-Hsiang Liu, Fang-Tzu Hsu, Yi Kung and Chih-Yu Chao
Int. J. Mol. Sci. 2025, 26(14), 6671; https://doi.org/10.3390/ijms26146671 - 11 Jul 2025
Viewed by 326
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail [...] Read more.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail to stop or reverse disease progression due to the severe side effects or the blood–brain barrier. This study aimed to investigate the neuroprotective effects of an intermittent heating approach, thermal cycling-hyperthermia (TC-HT), in an in vitro PD model using rotenone (ROT)-induced human neural SH-SY5Y cells. Our results revealed that TC-HT pretreatment conferred neuroprotective effects in the ROT-induced in vitro PD model using human SH-SY5Y neuronal cells, including reducing ROT-induced mitochondrial apoptosis and ROS accumulation in SH-SY5Y cells. In addition, TC-HT also inhibited the expression of α-syn and p-tau through heat-activated pathways associated with sirtuin 1 (SIRT1) and heat-shock protein 70 (Hsp70), involved in protein chaperoning, and resulted in the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which inhibit p-tau formation. These findings underscore the potential of TC-HT as an effective treatment for PD in vitro, supporting its further investigation in in vivo models with focused ultrasound (FUS) as a feasible heat-delivery approach. Full article
Show Figures

Figure 1

20 pages, 3181 KiB  
Review
Therapeutic Applications of Dental Mesenchymal Stem Cells in Alzheimer’s Disease—A Scoping Review
by Rupali Agnihotri and Sumit Gaur
Dent. J. 2025, 13(7), 288; https://doi.org/10.3390/dj13070288 - 26 Jun 2025
Viewed by 588
Abstract
Background/Objectives: Alzheimer’s disease (AD), a neurodegenerative condition, produces dementia and cognitive debility. Lately, preclinical models of AD have shown neuroregenerative potential of mesenchymal stem cells of dental origin (DMSC). This scoping review aims to map and synthesize the evidence on the therapeutic applications [...] Read more.
Background/Objectives: Alzheimer’s disease (AD), a neurodegenerative condition, produces dementia and cognitive debility. Lately, preclinical models of AD have shown neuroregenerative potential of mesenchymal stem cells of dental origin (DMSC). This scoping review aims to map and synthesize the evidence on the therapeutic applications of DMSCs in AD management. Methods: This review followed the Arksey and O’Malley framework for scoping reviews and PRISMA-ScR guidelines. Scopus, Medline (Pubmed), Web of Science, and Embase databases were searched for published literature until February 2025. Data was mapped according to the type of DMSC and their therapeutic properties useful in AD management, like neuro differentiation, neuroprotection through increased neuron number and vitality, anti-neuroinflammation, mitochondrial repair, and improved cognition. Results: A total of 22 articles were included. A research gap existed, as most studies were preclinical (in vitro and animal models) with no clinical trials in humans. Furthermore, they mostly evaluated neuroregenerative properties of dental pulp stem cells (DPSC) and stem cells from human-exfoliated deciduous teeth (SHED), while Periodontal ligament stem cells (PDLSC) were least studied. All the DMSCs were neuroprotective and increased neuron number and vitality. Neurodifferentiation was reported in DPSCs and PDLSCs, while DPSCs and SHEDs showed anti-neuroinflammation, mitochondrial repair, and improved cognition in AD animal models. Conclusions: Although the DPSCs and SHEDs showed promising outcomes in preclinical models of AD, a gap exists as results have not been translated into human clinical trials. Future advances may identify plausible ways of applying the DMSCs to regain the lost neurons and re-establish a healthy brain microenvironment. Full article
Show Figures

Figure 1

17 pages, 3818 KiB  
Article
Multi-Target Protective Effects of β-Caryophyllene (BCP) at the Intersection of Neuroinflammation and Neurodegeneration
by Caterina Ricardi, Anna Mazzierli, Stefano Guglielmo, Nicola Origlia, Francesca Gado, Clementina Manera, Grazia Chiellini and Beatrice Polini
Int. J. Mol. Sci. 2025, 26(13), 6027; https://doi.org/10.3390/ijms26136027 - 23 Jun 2025
Viewed by 393
Abstract
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to [...] Read more.
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to prevent neuroinflammation and promote neuroprotection by using both in vitro and ex vivo models of β-amyloid induced neurotoxicity. Our data showed that BCP significantly protected human microglial HMC3 cells from Aβ25-35-induced cytotoxicity, reducing the release of pro-inflammatory cytokines (TNF-α, IL-6) while enhancing IL-10 secretion. These effects were associated with a reduced activation of the NF-κB pathway, which emerged as a central mediator of BCP action. Notably, the use of CB2R- or PPARγ-selective antagonists revealed that the observed NF-κB inhibition by BCP may involve the coordinated activation of both canonical (e.g., CB2R) and non-canonical (e.g., PPARγ) receptors. Moreover, BCP restored the expression of SIRT1, PGC-1α, and BDNF, indicating the involvement of neurotrophic pathways. Clear neuroprotective properties for BCP have been highlighted in Aβ1-42-treated brain slice preparations, where BCP demonstrated the rescue of both the amyloid-dependent depression of BDNF expression and long-term synaptic potentiation (LTP) impairment. Overall, our results suggest that BCP constitutes an attractive natural molecule for the treatment of Aβ-induced neuroinflammation and synaptic dysfunction, warranting further exploration for its clinical application. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 3851 KiB  
Article
Protective Effects of Extracts from Green Leaves and Rhizomes of Posidonia oceanica (L.) Delile on an In Vitro Model of the Human Blood–Brain Barrier
by Giulia Abruscato, Manuela Mauro, Marie-Christine Boucau, Vincenzo Arizza, Mirella Vazzana, Lucie Dehouck, Fabien Gosselet, Claudio Luparello and Pietra Candela
Biology 2025, 14(6), 699; https://doi.org/10.3390/biology14060699 - 14 Jun 2025
Viewed by 2111
Abstract
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts [...] Read more.
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that P. oceanica’s extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

14 pages, 2888 KiB  
Article
Bisphenol AF Induced Neurodevelopmental Toxicity of Human Neural Progenitor Cells via Nrf2/HO-1 Pathway
by Huan Luo, Mengchao Ying, Yun Yang, Qian Huo, Xinyu Hong, Gonghua Tao and Ping Xiao
Int. J. Mol. Sci. 2025, 26(12), 5685; https://doi.org/10.3390/ijms26125685 - 13 Jun 2025
Viewed by 439
Abstract
Bisphenol AF (BPAF) is widely utilized as an analog of bisphenol A (BPA) in the plastics industry. However, there is limited evidence on its neurodevelopmental toxicity. Existing studies suggest that BPAF has greater accumulation in vivo than other bisphenol analogs, and could pass [...] Read more.
Bisphenol AF (BPAF) is widely utilized as an analog of bisphenol A (BPA) in the plastics industry. However, there is limited evidence on its neurodevelopmental toxicity. Existing studies suggest that BPAF has greater accumulation in vivo than other bisphenol analogs, and could pass through the placental barrier and the blood–brain barrier. In this study, we used the human neural progenitor cells line ReNcell CX, which was derived from 14-week human cortical brain tissue, as an in vitro model to investigate the neurodevelopmental toxicity effects of BPAF and BPA on ReNcell CX cells, and explored the possible mechanism by which BPAF induced neurodevelopmental toxicity on ReNcell CX cells. The results showed that BPAF reduced the proliferation of neural progenitor cells and changed the differentiation towards neurons after exposure for 24 h. Compared with BPA, ReNcell CX cells are more susceptible to BPAF exposure. In a 3D neurospheres model, BPAF affected the distance that neurons migrated outwards at the concentration of 2 μM. Furthermore, BPAF increased ROS levels in cells and reduced the expression of key proteins in the Nrf2/HO-1 pathway and its downstream molecules, such as SOD, GSH, and CAT. In conclusion, BPAF induces damage to critical nodes in neural progenitor cell development through the Nrf2/HO-1 pathway. Therefore, clarifying its neurodevelopmental toxicity and elaborating on the neurodevelopmental toxicity effects and mechanisms of bisphenol AF will help identify intervention targets for neurodevelopmental toxicity, and will have important public health significance for the safety assessment and risk prediction of bisphenol-related chemicals. Full article
(This article belongs to the Special Issue Molecular Research on Micropollutants in Various Enviroments)
Show Figures

Figure 1

24 pages, 10324 KiB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Viewed by 1320
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

34 pages, 1138 KiB  
Review
Role of Cellular Senescence in Parkinson’s Disease: Potential for Disease-Modification Through Senotherapy
by David J. Rademacher, Jacob E. Exline and Eileen M. Foecking
Biomedicines 2025, 13(6), 1400; https://doi.org/10.3390/biomedicines13061400 - 7 Jun 2025
Viewed by 2074
Abstract
Parkinson’s disease (PD) is an aging-related neurodegenerative disease characterized by a progressive loss of dopamine (DA)-secreting neurons in the substantia nigra. Most of the currently available treatments attempt to alleviate the disease symptoms by increasing DA transmission in the brain and are associated [...] Read more.
Parkinson’s disease (PD) is an aging-related neurodegenerative disease characterized by a progressive loss of dopamine (DA)-secreting neurons in the substantia nigra. Most of the currently available treatments attempt to alleviate the disease symptoms by increasing DA transmission in the brain and are associated with unpleasant side effects. Since there are no treatments that modify the course of PD or regenerate DA neurons, identifying therapeutic strategies that slow, stop, or reverse cell death in PD is of critical importance. Here, factors that confer vulnerability of substantia nigra DA neurons to cell death and the primary mechanisms of PD pathogenesis, including cellular senescence, a cellular stress response that elicits a stable cell cycle arrest in mitotic cells and profound phenotypic changes including the implementation of a pro-inflammatory secretome, are reviewed. Additionally, a discussion of the characteristics, mechanisms, and markers of cellular senescence and the development of approaches to target senescent cells, referred to as senotherapeutics, is included. Although the senotherapeutics curcumin, fisetin, GSK-650394, and astragaloside IV had disease-modifying effects in in vitro and in vivo models of PD, the potential long-term side effects of these compounds remain unclear. It remains to be elucidated whether their beneficial effects will translate to non-human primate models and/or human PD patients. The enhanced selectivity, safety, and/or efficacy of next generation senotherapeutic strategies including senolytic peptides, senoreverters, proteolysis-targeting chimeras, pro-drugs, immunotherapy, and nanoparticles will also be reviewed. Although these next generation senotherapeutics may have advantages, none have been tried in models of PD. Full article
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 731
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

17 pages, 1305 KiB  
Review
The Application and Challenges of Brain Organoids in Exploring the Mechanism of Arbovirus Infection
by Baoqiu Cui, Zhijie Wang, Anum Farid, Zeyu Wang, Kaiyue Wei, Naixia Ren, Fengtang Yang and Hong Liu
Microorganisms 2025, 13(6), 1281; https://doi.org/10.3390/microorganisms13061281 - 30 May 2025
Viewed by 570
Abstract
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been [...] Read more.
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been impeded. This delay is primarily due to the limitations inherent in current in vitro research models, including cell cultures and animal models. The simplicity of cell types and interspecies differences present significant obstacles to advancing our understanding of arbovirus infection mechanisms and the development of effective drugs. Human brain organoids, derived from human pluripotent stem cells or human embryonic stem cells and cultured in three-dimensional systems, more accurately replicate the extensive neuronal cellular diversity and key characteristics of human neurodevelopment. These organoids serve as an ideal model for investigating the intricate interactions between viruses and human hosts, and providing a novel platform for the development of antiviral drugs. In this review, we summarize how brain organoid models complement classical approaches to accelerate research into the infection mechanisms of arboviruses, with a particular focus on the types of neural cells, key factors, and cellular signaling pathways involved in the arbovirus infection of brain organoids that have been reported. Furthermore, we examine the development of brain organoids, address their current limitations, and propose future directions to enhance the application of brain organoids in the study of arboviral infectious diseases. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

12 pages, 1810 KiB  
Article
Examining Stromal Cell Interactions in an In Vitro Blood–Brain Barrier Model with Human Umbilical Vein Endothelial Cells
by Andrea Margari, Simon Konig, Vignesh Jayarajan, Silvia Rizzato, Giuseppe Maruccio and Emad Moeendarbary
Cells 2025, 14(11), 759; https://doi.org/10.3390/cells14110759 - 22 May 2025
Cited by 1 | Viewed by 785
Abstract
Understanding the function of the blood–brain barrier (BBB) in health and disease, as well as improving drug delivery across the BBB, remains a critical priority in neuroscience research. However, current in vitro models of the BBB have become increasingly complex and challenging to [...] Read more.
Understanding the function of the blood–brain barrier (BBB) in health and disease, as well as improving drug delivery across the BBB, remains a critical priority in neuroscience research. However, current in vitro models of the BBB have become increasingly complex and challenging to implement. In this study, we present a simplified microfluidic BBB model in which human umbilical vein endothelial cells (HUVECs) are cultured as a monolayer along a fibrin gel containing human pericytes and astrocytes. Remarkably, within just three days, the 3D co-culture significantly enhanced barrier formation and upregulated the expression of tight-junction proteins in HUVECs. These findings demonstrate that HUVECs, which have been extensively used for over 50 years to study vascular endothelium due to their ease of isolation and culture, can adapt their phenotype towards that of BBB endothelial cells under appropriate conditions. This microfluidic BBB model offers a valuable tool for drug development and for advancing our understanding of BBB physiology in both health and disease contexts. Full article
(This article belongs to the Collection Emerging Topics in Vascular Endothelial Cell Biology)
Show Figures

Figure 1

Back to TopTop