Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,401)

Search Parameters:
Keywords = impedance value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 876 KiB  
Article
Body Composition Changes in Hospitalized Patients with Community-Acquired Pneumonia
by Ryuji Sugiya, Osamu Nishiyama, Masashi Shiraishi, Kazuya Yoshikawa, Kyuya Gose, Ryo Yamazaki, Takashi Oomori, Akiko Sano, Shinichi Arizono, Yasushi Uchiyama, Yuji Higashimoto and Hisako Matsumoto
J. Clin. Med. 2025, 14(15), 5460; https://doi.org/10.3390/jcm14155460 (registering DOI) - 3 Aug 2025
Abstract
Background: The influence of hospitalization owing to pneumonia on changes in body composition has not been specifically reported. We conducted a prospective cohort study of patients with community-acquired pneumonia (CAP) requiring hospitalization to test the hypothesis that hospitalization affects body composition. Methods [...] Read more.
Background: The influence of hospitalization owing to pneumonia on changes in body composition has not been specifically reported. We conducted a prospective cohort study of patients with community-acquired pneumonia (CAP) requiring hospitalization to test the hypothesis that hospitalization affects body composition. Methods: Sixty-four consecutive patients with CAP were recruited. Body composition was measured within 24 h of admission and 24 h before discharge using bioelectrical impedance analysis. The association between changes in body composition and variables obtained at admission was investigated. Index values were calculated as weight divided by height squared. Results: The mean age of the patients was 76.0 ± 8.7 years (78.1% males). The median length of hospitalization was 12.0 days. Weight, body mass index (BMI), skeletal muscle (SM), SM index, fat-free mass (FFM), and FFM index significantly decreased (p < 0.001 for each), but fat mass (FM) and FM index did not. The serum total protein level was the only independent predictor of the lowest quartile of change in SM index (<−0.4) after adjusting for age and sex (p = 0.004). Conclusions: In summary, weight and BMI significantly decreased during hospitalization in patients with CAP, which was attributed to SM reduction. Patients with low serum total protein levels on admission were at risk of an accelerated decrease in the SM index. Nutritional intervention and rehabilitation are important for these patients. Full article
Show Figures

Figure 1

25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 (registering DOI) - 2 Aug 2025
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Figure 1

22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 (registering DOI) - 2 Aug 2025
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

18 pages, 5389 KiB  
Article
Novel Method of Estimating Iron Loss Equivalent Resistance of Laminated Core Winding at Various Frequencies
by Maxime Colin, Thierry Boileau, Noureddine Takorabet and Stéphane Charmoille
Energies 2025, 18(15), 4099; https://doi.org/10.3390/en18154099 (registering DOI) - 1 Aug 2025
Abstract
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying [...] Read more.
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying model-specific parameters, which depend on frequency, is crucial. This article focuses on a specific frequency range where a circuit model with series resistance and inductance, along with a parallel resistance to account for iron losses (Riron), is applicable. While the determination of series elements is well documented, the determination of Riron remains complex and debated, with traditional methods neglecting operating conditions such as magnetic saturation. To address these limitations, an innovative experimental method is proposed, comprising two main steps: determining the complex impedance of the magnetic device and extracting Riron from the model. This method aims to provide a more precise and representative estimation of Riron, improving the reliability and accuracy of electromagnetic and magnetic device simulations and designs. The obtained values of the iron loss equivalent resistance are different by at least 300% than those obtained by an impedance analyzer. The proposed method is expected to advance the understanding and modeling of losses in electromagnetic and magnetic devices, offering more robust tools for engineers and researchers in optimizing device performance and efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

27 pages, 2072 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 (registering DOI) - 1 Aug 2025
Viewed by 20
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
16 pages, 604 KiB  
Article
Once-Weekly Semaglutide Improves Body Composition in Spanish Obese Adults with Type 2 Diabetes: A 48-Week Prospective Real-Life Study
by Irene Caballero-Mateos, Cristóbal Morales-Portillo and Beatriz González Aguilera
J. Clin. Med. 2025, 14(15), 5434; https://doi.org/10.3390/jcm14155434 (registering DOI) - 1 Aug 2025
Viewed by 35
Abstract
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was [...] Read more.
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was a single-center, 12-month, real-world, ambispective study (6-month prospective and 6-month retrospective). Body composition parameters were assessed via segmental multifrequency bioelectrical impedance analysis (SMF-BIA). Results: A total of 117 patients with DM2, with a median age of 56 years, a median HbA1c level of 9.4%, and a median body weight of 102.5 kg, were included in the study. The median body weight, body fat mass, and visceral fat significantly decreased at 6 months, with values of −9.3, −7.5, and −1.8 kg, respectively. There were further reductions from 6 to 12 months, albeit at a slower rate. The median skeletal muscle mass significantly decreased at 6 months (−1.2 kg), although no further significant reductions were observed at 12 months. Conclusions: OW s.c. semaglutide for 12 months significantly improved body composition parameters, mainly at the expense of fat mass loss, with the preservation of skeletal muscle mass. These changes are clinically meaningful, since they impact general metabolic health and are associated with improvements in metabolic control and clinical parameters associated with renal and CV risks, as well as presumable improvements in quality of life. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

16 pages, 875 KiB  
Article
Association of Bioelectrical Impedance Analysis Parameters with Malnutrition in Patients Undergoing Maintenance Hemodialysis: A Cross-Sectional Study
by Minh D. Pham, Thang V. Dao, Anh T. X. Vu, Huong T. Q. Bui, Bon T. Nguyen, An T. T. Nguyen, Thuy T. T. Ta, Duc M. Cap, Toan D. Le, Phuc H. Phan, Ha N. Vu, Tuan D. Le, Toan Q. Pham, Thang V. Le, Thuc C. Luong, Thang B. Ta and Tuyen V. Duong
Medicina 2025, 61(8), 1396; https://doi.org/10.3390/medicina61081396 - 1 Aug 2025
Viewed by 141
Abstract
Background and Objectives: Malnutrition is one of the most common complications in patients undergoing hemodialysis (HD) and is closely linked to increased morbidity and mortality. This study aimed to investigate the nutritional status of HD patients and the clinical relevance of bioelectrical impedance [...] Read more.
Background and Objectives: Malnutrition is one of the most common complications in patients undergoing hemodialysis (HD) and is closely linked to increased morbidity and mortality. This study aimed to investigate the nutritional status of HD patients and the clinical relevance of bioelectrical impedance analysis (BIA) parameters such as the percent body fat (PBF), skeletal muscle mass index (SMI), extracellular water-to-total body water ratio (ECW/TBW), and phase angle (PhA) in assessing malnutrition in Vietnamese HD patients. Materials and Methods: This cross-sectional study was conducted among 184 patients undergoing hemodialysis in Hanoi, Vietnam. The BIA parameters were measured by the InBody S10 body composition analyzer, while malnutrition was assessed by the geriatric nutritional risk index (GNRI), with a GNRI <92 classified as a high risk of malnutrition. The independent BIA variables for predicting malnutrition and its cut-off values were explored using logistic regression models and a receiver operating characteristic (ROC) curve analysis, respectively. Results: Among the study population, 42.9% (79/184) of patients were identified as being at a high risk of malnutrition. The multivariate logistic regression analysis revealed that a higher ECW/TBW was independently associated with an increased risk of malnutrition, while the PBF, SMI, and PhA expressed significant and inverse associations with the malnutrition risk after adjusting for multiple confounders. The cut-off values for predicting the high risk of malnutrition in overall HD patients were determined to be 20.45%, 7.75 kg/m2, 5.45°, and 38.03% for the PBF, the SMI, the PhA, and the ECW/TBW ratio, respectively. Conclusions: BIA parameters, including the PBF, SMI, PhA, and ECW/TBW ratio, could serve as indicators of malnutrition in general Vietnamese patients with HD. Full article
(This article belongs to the Special Issue End-Stage Kidney Disease (ESKD))
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Viewed by 75
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

21 pages, 576 KiB  
Review
Role of Enzyme Technologies and Applied Enzymology in Valorising Seaweed Bioproducts
by Blessing Mabate, Lithalethu Mkabayi, Deandra Rochelle Goddard, Coleen Elizabeth Grobler and Brett Ivan Pletschke
Mar. Drugs 2025, 23(8), 303; https://doi.org/10.3390/md23080303 - 29 Jul 2025
Viewed by 248
Abstract
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest [...] Read more.
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest because of their applications in nutraceuticals, pharmaceuticals, agriculture, and cosmetics. Particularly in the pharmaceutical and nutraceutical fields, algal bioproducts have shown tremendous activity in regulating enzymes involved in human diseases. However, the drawbacks of conventional extraction methods impede the complete exploitation of seaweed biomass. These include low efficiency, high cost, and potential harm to the environment. Enzyme technology developments in recent years present a viable way to overcome these challenges. Enzymatic processes improve product yields and reduce the environmental impact of processing, while facilitating the more effective extraction of valuable bioactive compounds as part of an integrated biorefinery approach. Enzyme-assisted biorefinery techniques can greatly advance the creation of a circular bioeconomy and increase the yield of extracted seaweed bioproducts, thus improving their value. With the potential to scale up to industrial levels, these biotechnological developments in enzymatic extraction are developing rapidly and can advance the sustainable exploitation of seaweed resources. This review emphasises the increasing importance of enzyme technologies in the seaweed biorefinery and their contribution to developing more environmentally friendly, economically feasible, and sustainable methods for valorising products derived from seaweed. In the biorefinery industry, enzyme-assisted methods have enormous potential for large-scale industrial applications with further development, opening the door to a more sustainable, circular bioeconomy. Full article
(This article belongs to the Special Issue Research on Seaweed-Degrading Enzymes)
Show Figures

Figure 1

17 pages, 4141 KiB  
Article
TPG Conversion and Residual Oil Simulation in Heavy Oil Reservoirs
by Wenli Ke, Zonglun Li and Qian Liu
Processes 2025, 13(8), 2403; https://doi.org/10.3390/pr13082403 - 29 Jul 2025
Viewed by 276
Abstract
The Threshold Pressure Gradient (TPG) phenomenon exerts a profound influence on fluid flow dynamics in heavy oil reservoirs. However, the discrepancies between the True Threshold Pressure Gradient (TTPG) and Pseudo-Threshold Pressure Gradient (PTPG) significantly impede accurate residual oil evaluation and rational field development [...] Read more.
The Threshold Pressure Gradient (TPG) phenomenon exerts a profound influence on fluid flow dynamics in heavy oil reservoirs. However, the discrepancies between the True Threshold Pressure Gradient (TTPG) and Pseudo-Threshold Pressure Gradient (PTPG) significantly impede accurate residual oil evaluation and rational field development planning. This study proposes a dual-exponential conversion model that effectively bridges the discrepancy between TTPG and PTPG, achieving an average deviation of 12.77–17.89% between calculated and measured TTPG values. Nonlinear seepage simulations demonstrate that TTPG induces distinct flow barrier effects, driving residual oil accumulation within low-permeability interlayers and the formation of well-defined “dead oil zones.” In contrast, the linear approximation inherent in PTPG overestimates flow initiation resistance, resulting in a 47% reduction in recovery efficiency and widespread residual oil enrichment. By developing a TTPG–PTPG conversion model and incorporating genuine nonlinear seepage characteristics into simulations, this study effectively mitigates the systematic errors arising from the linear PTPG assumption, thereby providing a scientific basis for accurately predicting residual oil distribution and enhancing oil recovery efficiency. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

16 pages, 3298 KiB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sánchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Viewed by 356
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 250
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

15 pages, 2881 KiB  
Article
Monitoring Rose Black Spot Disease Using Electrical Impedance Spectroscopy
by Tianyi Ma, Dongyu Tan, Rui Wang, Tianyi Li, Yiying Wang, Guilin Shan, Ji Qian and Bao Di
Agronomy 2025, 15(8), 1800; https://doi.org/10.3390/agronomy15081800 - 25 Jul 2025
Viewed by 160
Abstract
Rosa hybrida is a globally important ornamental species, but its economic and aesthetic value is often compromised by rose black spot disease (Diplocarpon rosae). Effective monitoring and early detection are essential for disease management. This study investigated physiological and biophysical responses [...] Read more.
Rosa hybrida is a globally important ornamental species, but its economic and aesthetic value is often compromised by rose black spot disease (Diplocarpon rosae). Effective monitoring and early detection are essential for disease management. This study investigated physiological and biophysical responses to infection in a resistant cultivar (‘Carefree Wonder’) and a susceptible cultivar (‘Red Cap’) using electrical impedance spectroscopy (EIS), biochemical assays, and ultrastructural analysis. Key EIS parameters (ri, re, τ), reducing sugar and free proline content, chitinase and β-1,3-glucanase activities, and chloroplast ultrastructure were monitored. The results showed that ‘Carefree Wonder’ had a higher initial EIS arc magnitude and osmolyte levels than ‘Red Cap’. Following infection, ‘Red Cap’ displayed earlier and more pronounced increases in EIS arc magnitude, while ‘Carefree Wonder’ responded more gradually. Reducing sugar and proline levels increased in both cultivars, with earlier accumulation in the resistant cultivar. Notably, extracellular resistivity (re) exhibited strong positive correlations with reducing sugar (R2 = 0.479), free proline (R2 = 0.399), chitinase (R2 = 0.399), and β-1,3-glucanase activities (R2 = 0.401). These findings highlight re as the most reliable EIS-derived indicator for early, non-destructive detection of rose black spot resistance. This study supports the potential of EIS for rapid disease diagnostics in rose breeding and cultivation. Full article
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 425
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 452
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop