Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,668)

Search Parameters:
Keywords = impact of mixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

25 pages, 3035 KiB  
Article
Physical, Mechanical, and Durability Behavior of Sustainable Mortars with Construction and Demolition Waste as Supplementary Cementitious Material
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Buildings 2025, 15(15), 2757; https://doi.org/10.3390/buildings15152757 - 5 Aug 2025
Abstract
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, [...] Read more.
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, highlighting the need for effective strategies to mitigate the associated environmental impacts of the sector. This investigation intends to evaluate the influence of mixed CDW on the physical, mechanical, and durability properties of mortars with CDW partially replacing Portland cement, and allow performance comparisons with mortars produced with fly ash, a commonly used supplementary binder in cement-based materials. Thus, three mortar formulations were developed (reference mortar, mortar with 25% CDW, and mortars with 25% fly ash) and several characterization tests were carried out on the CDW powder and the developed mortars. The work’s principal findings revealed that through mechanical grinding processes, it was possible to obtain a CDW powder suitable for cement replacement and with good indicators of pozzolanic activity. The physical properties of the mortars revealed a decrease of about 10% in water absorption by immersion, which resulted in improved performance regarding durability, especially with regard to the lower carbonation depth (−1.1 mm), and a decrease of 51% in the chloride diffusion coefficient, even compared to mortars incorporating fly ash. However, the mechanical performance of the mortars incorporating CDW was reduced (25% in terms of flexural strength and 58% in terms of compressive strength), but their practical applicability was never compromised and their mechanical performance proved to be superior to that of mortars incorporating fly ash. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 2626 KiB  
Article
Process–Structure–Property Correlations in Twin-Screw Extrusion of Graphitic Negative Electrode Pastes for Lithium Ion Batteries Focusing on Kneading Concentrations
by Kristina Borzutzki, Markus Börner, Olga Fromm, Uta Rodehorst and Martin Winter
Batteries 2025, 11(8), 299; https://doi.org/10.3390/batteries11080299 - 5 Aug 2025
Abstract
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like [...] Read more.
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like viscosity and particle size distribution. For different active materials at a constant electrode paste composition, a clear correlation of increasing kneading concentration with decreasing viscosity can be observed up to a certain reversal point, initiating a change in the trend and the rheological behavior, thus indicating a process limit. The fundamental effects causing this change and the associated impact on materials and battery performance were evaluated by applying further analytical methods and electrochemical characterization. It is revealed that the change in viscosity is associated with enhanced de-agglomeration of the carbon black additive and with partial particle grinding of the active material and thus a partial change in the interlayer distance of graphene layers and, correspondingly, the electrochemical behavior of the active material. Beyond this, correlations between processing parameters and product properties are presented. Furthermore, indicators are suggested with which monitoring of the machine parameters enables the detection of changes in the electrode paste characteristics. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

17 pages, 5314 KiB  
Article
The Settlement Ratio and Settled Area: Novel Indicators for Analyzing Land Use in Relation to Road Network Functions and Performance
by Giulia Del Serrone, Giuseppe Cantisani and Paolo Peluso
Eng 2025, 6(8), 188; https://doi.org/10.3390/eng6080188 - 5 Aug 2025
Abstract
Land use significantly influences mobility dynamics, affecting both travel behavior and mode choice. Traditional indicators such as the Floor Area Ratio, Land-Use Mix Index, and Built-up Area Ratio are widely used to describe settlement patterns; yet, they often fail to capture their functional [...] Read more.
Land use significantly influences mobility dynamics, affecting both travel behavior and mode choice. Traditional indicators such as the Floor Area Ratio, Land-Use Mix Index, and Built-up Area Ratio are widely used to describe settlement patterns; yet, they often fail to capture their functional impacts on road networks. This study introduces two complementary indicators—Settlement Ratio (SR) and Settled Area (SA)—developed through a spatial analysis framework integrating GIS data and MATLAB processing. SR offers a continuous typological profile of built-up functions along the road axis, while SA measures the percentage of anthropized land within fixed analysis windows. Applied to two Italian state roads, SS14 and SS309, in the Veneto Region, the dual-indicator approach reveals how the intensity (SR) and extent (SA) of settlement vary across different territorial contexts. In suburban segments, SR values exceeding 15–20, together with SA levels between 10% and 15%, highlight the significant spatial impact of isolated development clusters—often not evident from macro-scale observations. These findings demonstrate that the SR–SA framework provides a robust tool for analyzing land use in relation to road function. Although the study focuses on spatial structure and indicator design, future developments will explore correlations with traffic flow, speed, and crash data to support road safety analyses. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

22 pages, 4169 KiB  
Article
Multi-Scale Differentiated Network with Spatial–Spectral Co-Operative Attention for Hyperspectral Image Denoising
by Xueli Chang, Xiaodong Wang, Xiaoyu Huang, Meng Yan and Luxiao Cheng
Appl. Sci. 2025, 15(15), 8648; https://doi.org/10.3390/app15158648 (registering DOI) - 5 Aug 2025
Abstract
Hyperspectral image (HSI) denoising is a crucial step in image preprocessing as its effectiveness has a direct impact on the accuracy of subsequent tasks such as land cover classification, target recognition, and change detection. However, existing methods suffer from limitations in effectively integrating [...] Read more.
Hyperspectral image (HSI) denoising is a crucial step in image preprocessing as its effectiveness has a direct impact on the accuracy of subsequent tasks such as land cover classification, target recognition, and change detection. However, existing methods suffer from limitations in effectively integrating multi-scale features and adaptively modeling complex noise distributions, making it difficult to construct effective spatial–spectral joint representations. This often leads to issues like detail loss and spectral distortion, especially when dealing with complex mixed noise. To address these challenges, this paper proposes a multi-scale differentiated denoising network based on spatial–spectral cooperative attention (MDSSANet). The network first constructs a multi-scale image pyramid using three downsampling operations and independently models the features at each scale to better capture noise characteristics at different levels. Additionally, a spatial–spectral cooperative attention module (SSCA) and a differentiated multi-scale feature fusion module (DMF) are introduced. The SSCA module effectively captures cross-spectral dependencies and spatial feature interactions through parallel spectral channel and spatial attention mechanisms. The DMF module adopts a multi-branch parallel structure with differentiated processing to dynamically fuse multi-scale spatial–spectral features and incorporates a cross-scale feature compensation strategy to improve feature representation and mitigate information loss. The experimental results show that the proposed method outperforms state-of-the-art methods across several public datasets, exhibiting greater robustness and superior visual performance in tasks such as handling complex noise and recovering small targets. Full article
(This article belongs to the Special Issue Remote Sensing Image Processing and Application, 2nd Edition)
Show Figures

Figure 1

35 pages, 1824 KiB  
Article
Visual Flight Rules Stabilised Approach: Identifying Human-Factor Influences on Incidents and Accidents During Stabilised Approach, Landing, and Go-Around Flight Phases for General Aviation
by Riya Deshmukh and Arnab Majumdar
Appl. Sci. 2025, 15(15), 8647; https://doi.org/10.3390/app15158647 (registering DOI) - 5 Aug 2025
Abstract
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It [...] Read more.
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It will review how pilot experience influences decision-making and identifies mitigation strategies, focusing on go-arounds to prevent accidents during these critical phases. Surveys and roundtable discussions were conducted to identify factors influencing pilot performance during approach, landing, and go-around manoeuvres. By using a mixed-methods approach that combined thematic and statistical analyses, key safety factors were identified, including situational awareness, decision-making, and operational complexity. The study also examined the relationship between experience and decision-making, highlighting areas for targeted interventions to improve safety. The research emphasises the importance of integrating decision-making considerations into training programmes and connecting these to human factors. Through identifying areas for improvement, this study offers a safety-driven framework to address decision-making challenges during approach, landing, and go-around phases, with the objective of reducing accident and incident rates in general aviation. Full article
(This article belongs to the Special Issue Research on Aviation Safety)
Show Figures

Figure 1

13 pages, 364 KiB  
Case Report
Racial Imposter Syndrome and Music Performance Anxiety: A Case Study
by Trisnasari Fraser
Behav. Sci. 2025, 15(8), 1057; https://doi.org/10.3390/bs15081057 - 4 Aug 2025
Abstract
The impact of cultural identity on music performance anxiety (MPA) is under-researched. This retrospective case study explores the treatment of a professional musician in her 30s who presented with MPA associated with performing music related to her estranged father’s cultural background. The case [...] Read more.
The impact of cultural identity on music performance anxiety (MPA) is under-researched. This retrospective case study explores the treatment of a professional musician in her 30s who presented with MPA associated with performing music related to her estranged father’s cultural background. The case formulation identified attachment ruptures and negative cognitions associated with her mixed cultural heritage that contributed to an experience of imposterism—referred to in lay literature as ‘racial imposter syndrome’ (RIS). It was hypothesized that RIS served to perpetuate her MPA. An attachment-based approach and Acceptance and Commitment Therapy framework was adopted, drawing on evidence-based treatment for MPA and mixed heritage individuals. The Depression Anxiety Stress Scale-21 (DASS-21), Outcome Rating Scale (ORS) and Session Rating Scale (SRS) were used as outcome measures. These measures fluctuated throughout the therapy. While improvements were observed in depression scores midway through treatment, elevated stress and depression scores at the conclusion of treatment were understood to reflect situational factors related to financial and housing precarity. Nonetheless, at the conclusion of treatment, the client showed improvement in managing MPA, evidenced by her progress in recording an album and reengagement with public performances. This case study adds to the limited research on treating MPA in racially minoritized and mixed-race individuals, Further research is required across larger and more diverse samples to better understand the relationship between MPA and RIS and to develop effective interventions. Full article
(This article belongs to the Special Issue Interventions for Music Performance Anxiety)
Show Figures

Figure 1

20 pages, 519 KiB  
Article
Bridging the Capacity Building Gap for Antimicrobial Stewardship Implementation: Evidence from Virtual Communities of Practice in Kenya, Ghana, and Malawi
by Ana C. Barbosa de Lima, Kwame Ohene Buabeng, Mavis Sakyi, Hope Michael Chadwala, Nicole Devereaux, Collins Mitambo, Christine Mugo-Sitati, Jennifer Njuhigu, Gunturu Revathi, Emmanuel Tanui, Jutta Lehmer, Jorge Mera and Amy V. Groom
Antibiotics 2025, 14(8), 794; https://doi.org/10.3390/antibiotics14080794 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through [...] Read more.
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial Stewardship (TEACH AMS), which uses the virtual Extension for Community Healthcare Outcomes (ECHO) learning model to enhance AMS capacity in Kenya, Ghana, and Malawi. Methods: A mixed-methods approach was used, which included attendance data collection, facility-level assessments, post-session and follow-up surveys, as well as focus group discussions. Results: Between September 2023 and February 2025, 77 virtual learning sessions were conducted, engaging 2445 unique participants from hospital-based AMS committees and health professionals across the three countries. Participants reported significant knowledge gain, and data showed facility improvements in two core AMS areas, including the implementation of multidisciplinary ward-based interventions/communications and enhanced monitoring of antibiotic resistance patterns. Along those lines, participants reported that the program assisted them in improving prescribing and culture-based treatments, and also evidence-informed antibiotic selection. The evidence of implementing ward-based interventions was further stressed in focus group discussions, as well as other strengthened practices like point-prevalence surveys, and development or revision of stewardship policies. Substantial improvements in microbiology services were also shared by participants, particularly in Malawi. Other practices mentioned were strengthened multidisciplinary communication, infection prevention efforts, and education of patients and the community. Conclusion: Our findings suggest that a virtual case-based learning educational intervention, providing structured and tailored AMS capacity building, can drive behavior change and strengthen healthcare systems in low resource settings. Future efforts should aim to scale up the engagements and sustain improvements to further strengthen AMS capacity. Full article
31 pages, 5558 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

13 pages, 224 KiB  
Article
Piloting a Virtual Mindful Eating Program to Improve Eating Behaviors and Reduce Food Waste
by Michael F. Royer, Afton Kechter, Dara L. James, Margaret Moeller, Maricarmen Vizcaino and Christopher Wharton
Challenges 2025, 16(3), 38; https://doi.org/10.3390/challe16030038 - 4 Aug 2025
Abstract
Introduction: The wellbeing of humans and the planet is negatively impacted by unhealthy eating behaviors and excessive food waste. Mindfulness approaches have the potential to help people modify their behavior to achieve healthier outcomes. Pilot testing methods to sustainably support healthy eating and [...] Read more.
Introduction: The wellbeing of humans and the planet is negatively impacted by unhealthy eating behaviors and excessive food waste. Mindfulness approaches have the potential to help people modify their behavior to achieve healthier outcomes. Pilot testing methods to sustainably support healthy eating and reduce food waste are essential for identifying effective ways to promote human and planetary health. Methods: A pilot study was conducted to test a virtual mindful eating program to improve eating behaviors and reduce food waste among a small sample of U.S. adults. Mixed-methods approaches were used to identify the efficacy of the piloted intervention on mindfulness, eating behaviors, and food waste while identifying participant perspectives of the mindful eating program. Results: Quantitative study outcomes indicated positive intervention effects on hunger/satiety cues and food appreciation. No significant intervention effects were detected on mindfulness or food waste. Qualitative findings highlighted participant reports of experiencing greater self-awareness, an improved relationship with food, and a sense of creativity with meal preparation. Conclusions: This pilot study tested a novel mindful eating program that improved eating behaviors related to hunger/satiety and increased food appreciation. The program was accepted by participants, but it did not increase mindfulness or reduce food waste. Future iterations of this mindful eating program will require modifications to test different approaches for increasing mindfulness and reducing food waste while expanding the positive effects on healthy eating. Full article
(This article belongs to the Section Food Solutions for Health and Sustainability)
23 pages, 1236 KiB  
Article
Who Shapes What We Should Do in Urban Green Spaces? An Investigation of Subjective Norms in Pro-Environmental Behavior in Tehran
by Rahim Maleknia, Aureliu-Florin Hălălișan and Kosar Maleknia
Forests 2025, 16(8), 1273; https://doi.org/10.3390/f16081273 - 4 Aug 2025
Abstract
Understanding the social drivers of pro-environmental behavior in urban forests and green spaces is critical for addressing sustainability challenges. Subjective norms serve as a key pathway through which social expectations influence individuals’ behavioral intentions. Despite mixed findings in the literature regarding the impact [...] Read more.
Understanding the social drivers of pro-environmental behavior in urban forests and green spaces is critical for addressing sustainability challenges. Subjective norms serve as a key pathway through which social expectations influence individuals’ behavioral intentions. Despite mixed findings in the literature regarding the impact of subjective norms on individuals’ intentions, there is a research gap about the determinants of this construct. This study was conducted to explore how social expectations shape perceived subjective norms among visitors of urban forests. A theoretical model was developed with subjective norms at its center, incorporating their predictors including social identity, media influence, interpersonal influence, and institutional trust, personal norms as a mediator, and behavioral intention as the outcome variable. Using structural equation modeling, data was collected and analyzed from a sample of visitors of urban forests in Tehran, Iran. The results revealed that subjective norms play a central mediating role in linking external social factors to behavioral intention. Social identity emerged as the strongest predictor of subjective norms, followed by media and interpersonal influence, while institutional trust had no significant effect. Subjective norms significantly influenced both personal norms and intentions, and personal norms also directly predicted intention. The model explained 50.9% of the variance in subjective norms and 39.0% in behavioral intention, highlighting its relatively high explanatory power. These findings underscore the importance of social context and internalized norms in shaping sustainable behavior. Policy and managerial implications suggest that strategies should prioritize community-based identity reinforcement, media engagement, and peer influence over top-down institutional messaging. This study contributes to environmental psychology and the behavior change literature by offering an integrated, empirically validated model. It also provides practical guidance for designing interventions that target both social and moral dimensions of environmental action. Full article
(This article belongs to the Special Issue Forest Management Planning and Decision Support)
Show Figures

Figure 1

25 pages, 4247 KiB  
Article
Mechanical Behavior of Self-Compacting Concrete Incorporating Rubber and Recycled Aggregates for Non-Structural Applications: Optimization Using Response Surface Methodology
by Yaqoob Saif, Jihen Mallek, Bilel Hadrich and Atef Daoud
Buildings 2025, 15(15), 2736; https://doi.org/10.3390/buildings15152736 - 3 Aug 2025
Viewed by 78
Abstract
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. [...] Read more.
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. This study investigates the performance of self-compacting concrete (SCC) incorporating up to 20% rubber aggregates (sand and gravel) and 40% recycled concrete aggregate (RCA) for non-structural applications. A series of tests was conducted to assess fresh and hardened properties, including flowability, compressive strength, tensile strength, flexural strength, water absorption, and density. The results indicated that increasing RCA content reduced density and compressive strength, while tensile and flexural strengths were only moderately affected. Response surface methodology (RSM), utilizing a Box–Behnken design, was employed to optimize compressive, tensile, and flexural strength responses. Statistical analysis was used to identify the optimal mix proportions, which balance the mechanical performance and sustainability of SCC with recycled components. Mixtures incorporating moderate rubber content—specifically, 5–5.5% sand rubber and 0–6% coarse rubber—and 40% recycled-concrete aggregate (RCA) achieved the highest predicted performance, with compressive strength ranging from 20.00 to 28.26 MPa, tensile strength from 2.16 to 2.85 MPa, and flexural strength reaching 5.81 MPa, making them suitable for sidewalks and walkways. Conversely, mixtures containing higher rubber proportions (5.5–20% sand rubber and 20% coarse rubber) combined with the same RCA level (40%) showed the lowest mechanical performance, with compressive strength between 5.2 and 10.08 MPa, tensile strength of 1.05–1.41 MPa, and flexural strength from 2.18 to 3.54 MPa. These findings underscore the broad performance range achievable through targeted optimization. They confirm the viability of recycled materials for producing environmentally friendly SCC in non-structural applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel
by John Karagiorgos, Platon Patlakas, Vassilios Vervatis and Sarantis Sofianos
Remote Sens. 2025, 17(15), 2684; https://doi.org/10.3390/rs17152684 - 3 Aug 2025
Viewed by 60
Abstract
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. [...] Read more.
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. Using a regional coupled ocean–wave–atmosphere model, we conducted sensitivity experiments for Storm Daniel (2023) comparing two solar radiation penetration schemes in the ocean model component: one with a constant light attenuation depth and another with chlorophyll-dependent attenuation based on satellite estimates. Results show that the chlorophyll-driven radiative heating scheme consistently produces warmer sea surface temperatures (SSTs) prior to cyclone onset, leading to stronger cyclones characterized by deeper minimum mean sea-level pressure, intensified convective activity, and increased rainfall. However, post-storm SST cooling is also amplified due to stronger wind stress and vertical mixing, potentially influencing subsequent local atmospheric conditions. Overall, this work demonstrates that ocean bio-optical processes can meaningfully impact Mediterranean cyclone behavior, highlighting the importance of using appropriate underwater light attenuation schemes and ocean color remote sensing data in coupled models. Full article
Show Figures

Figure 1

Back to TopTop