Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,112)

Search Parameters:
Keywords = ice-cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14813 KiB  
Article
Application and Comparison of Satellite-Derived Sea Surface Temperature Gradients to Identify Seasonal and Interannual Variability off the California Coast: Preliminary Results and Future Perspectives
by Jorge Vazquez-Cuervo, Marisol García-Reyes, David S. Wethey, Daniele Ciani and Jose Gomez-Valdes
Remote Sens. 2025, 17(15), 2722; https://doi.org/10.3390/rs17152722 - 6 Aug 2025
Abstract
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product [...] Read more.
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product (MUR, 0.01° grid scale) and the Operational SST and Ice Analysis (OSTIA, 0.05° grid scale), available through the Group for High Resolution SST (GHRSST). Both products show similar seasonal variability, with maxima occurring in the summer time frame. Additionally, both products show an increasing trend of SST gradients near the coast. However, differences exist between the two products (maximum gradient intensities were around 0.11 and 0.06 °C/km for OSTIA and MUR, respectively). The potential contributions of both cloud cover and the collocation of the MUR SST onto the OSTIA SST grid product to these differences were examined. Spectra and coherences were examined at two specific latitudes along the coast where upwelling can occur. A major conclusion is that future work needs to focus on cloud cover and its impact on the derivation of SST in coastal regions. Future comparisons also need to apply collocation methodologies that maintain, as much as possible, the spatial variability of the high-resolution product. Full article
Show Figures

Figure 1

24 pages, 9834 KiB  
Article
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Viewed by 129
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been [...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

5 pages, 575 KiB  
Interesting Images
Hepatic and Splenic Hyaloserositis
by Ádám Ferenczi, Karim Rashid, Yaffa Alkawasmi, El Samad Rayan, Sawako Yoshida, Ahmed Friji, Tran Anh Phuong, Tamás Lantos and Anita Sejben
Diagnostics 2025, 15(15), 1949; https://doi.org/10.3390/diagnostics15151949 - 4 Aug 2025
Viewed by 189
Abstract
Hyaloserositis, also known as the icing sugar phenomenon, may be commonly observed during autopsies; however, it is not a well-documented topic with varying nomenclature and etiology, which can be generally defined as an organ being covered with a shiny, fibrous hyaline membrane. In [...] Read more.
Hyaloserositis, also known as the icing sugar phenomenon, may be commonly observed during autopsies; however, it is not a well-documented topic with varying nomenclature and etiology, which can be generally defined as an organ being covered with a shiny, fibrous hyaline membrane. In our work, we present the case of a 71-year-old female patient with alcohol-induced liver cirrhosis and subsequent ascites and recurrent peritonitis. During the autopsy, a cirrhotic liver and an enlarged spleen were observed, both exhibiting features consistent with hyaloserositis, accompanied by acute fibrinopurulent peritonitis. Histological examination revealed the classical manifestation of hyaloserositis, further proven by Crossmon staining. The cause of death was concluded as hepatic encephalopathy. During our literature review, a total of seven cases were found. It must be emphasized that no publication describing hyaloserositis from the perspective of a pathologist was discovered. Regarding etiology, abdominal presentations were most commonly caused by serohepatic tuberculosis, while pleural manifestation was observed following trauma. Hyaloserositis may prove to be a diagnostic difficulty in imaging findings, as it can mimic malignancy; therefore, a scientific synthesis is necessary. Full article
Show Figures

Figure 1

34 pages, 3521 KiB  
Review
Overview of Water-Ice in Asteroids—Targets of a Revolution by LSST and JWST
by Ákos Kereszturi, Mohamed Ramy El-Maarry, Anny-Chantal Levasseur-Regourd, Imre Tóth, Bernadett D. Pál and Csaba Kiss
Universe 2025, 11(8), 253; https://doi.org/10.3390/universe11080253 - 30 Jul 2025
Viewed by 184
Abstract
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There [...] Read more.
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There might be several extinct comets among the asteroids with only internal ice content, demonstrating the complex evolution of such bodies. To evaluate the formation of ice-hosting small objects, their migration and retention capacity by a surface covering dust layer are also overviewed to provide a complex picture of volatile occurrences. This review aims to support further work and search for sublimation-induced activity of asteroids by future missions and telescopic surveys. Based on the observed and hypothesized occurrence and characteristics of icy asteroids, future observation-related estimations were made regarding the low limiting magnitude future survey of LSST/Vera Rubin and also the infrared ice identification by the James Webb space telescope. According to these estimations, there is a high probability of mapping the distribution of ice in the asteroid belt over the next decade. Full article
(This article belongs to the Special Issue The Hidden Stories of Small Planetary Bodies)
Show Figures

Figure 1

17 pages, 1353 KiB  
Article
SSB: Smart Contract Security Detection Tool Suitable for Industrial Control Scenarios
by Ci Tao, Shuai He and Xingqiu Shen
Sensors 2025, 25(15), 4695; https://doi.org/10.3390/s25154695 - 30 Jul 2025
Viewed by 299
Abstract
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior [...] Read more.
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior logical coverage across various vulnerability types, as evidenced by its performance on smart contract samples. This suggests that semantic-based approaches, which integrate domain-specific invariants and runtime monitoring, can address the unique challenges of ICS, such as real-time constraints and semantic consistency between code and physical control logic. The framework’s ability to model industrial invariants—covering security, functionality, consistency, time-related, and resource consumption aspects—provides a robust mechanism to prevent critical errors like unauthorized access or premature equipment operation. However, the lack of real-world ICS validation due to confidentiality constraints limits the generalizability of these findings. Future research should focus on adapting SSB for real industrial deployments, exploring scalability across diverse ICS architectures, and integrating advanced AI techniques for dynamic invariant adjustment. Additionally, addressing cross-chain interoperability and privacy concerns could further enhance the framework’s applicability in complex industrial ecosystems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 334
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

23 pages, 8212 KiB  
Review
Recent Developments in the Nonlinear Hydroelastic Modeling of Sea Ice Interaction with Marine Structures
by Sarat Chandra Mohapatra, Pouria Amouzadrad and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(8), 1410; https://doi.org/10.3390/jmse13081410 - 24 Jul 2025
Viewed by 356
Abstract
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid [...] Read more.
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid domain solutions, fluid–ice interaction mechanisms, and ice–structure (ship) contact models, alongside experimental techniques and various numerical models. While significant progress has been made, particularly with coupled approaches validated by experimental data, challenges remain in full-scale validation and accurately representing ice properties and dynamic interactions. Findings highlight the increasing importance of understanding sea ice interactions, particularly in the context of climate change, Arctic transportation, and the development of very large floating structures. This review serves as a crucial resource for advancing safe and sustainable Arctic and offshore engineering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 1360 KiB  
Systematic Review
Systematic Review and Meta-Analysis on the BeGraft Peripheral and BeGraft Peripheral PLUS Outcomes as Bridging Covered Stents in Fenestrated and Branched Endovascular Aortic Repair
by George Apostolidis, Petroula Nana, José I. Torrealba, Giuseppe Panuccio, Athanasios Katsargyris and Tilo Kölbel
J. Clin. Med. 2025, 14(15), 5221; https://doi.org/10.3390/jcm14155221 - 23 Jul 2025
Viewed by 215
Abstract
Background/Objective: Bridging stent optimal choice in fenestrated and branched endovascular aortic repair (f/bEVAR) is under investigation. This systematic review and meta-analysis studied the outcomes of the BeGraft peripheral and peripheral PLUS as bridging stents in f/bEVAR. Methods: The methodology was pre-registered [...] Read more.
Background/Objective: Bridging stent optimal choice in fenestrated and branched endovascular aortic repair (f/bEVAR) is under investigation. This systematic review and meta-analysis studied the outcomes of the BeGraft peripheral and peripheral PLUS as bridging stents in f/bEVAR. Methods: The methodology was pre-registered to the PROSPERO (CRD420251007695). Following the PRISMA guidelines and PICO model, the PubMed, Cochrane and Embase databases were searched for observational studies and randomized control trials, in English, from 2015 to 2025, reporting on f/bEVAR patients using the second-generation BeGraft peripheral or the BeGraft peripheral PLUS balloon expandable covered stent (BECS; Bentley InnoMed, Hechingen, Germany) for bridging. The ROBINS-I assessed the risk of bias and GRADE the quality of evidence. Target vessel technical success, occlusion/stenosis, endoleak Ic/IIIc, reintervention and instability during follow-up were primary outcomes, assessed using proportional meta-analysis. Results: Among 1266 studies, eight were included (1986 target vessels; 1791 bridged via BeGraft); all retrospective, except one. The ROBINS-I showed that seven were at serious risk of bias. According to GRADE, the quality of evidence was “very low” for primary outcomes. Target vessel technical success was 99% (95% CI 98–100%; I2 = 12%). The mean follow-up was 20.2 months. Target-vessel instability was 3% (95% CI 2–5%; I2 = 44%), occlusion/stenosis was 1% (95% CI 1–4%; I2 = 8%) and endoleak Ic/IIIc was 1% (95% CI 0–3%; I2 = 0%). The estimated target-vessel reintervention was 2% (95% CI 2–4%; I2 = 12%). Celiac trunk, superior mesenteric and renal artery instability were 1% (95% CI 0–16%; I2 = 0%;), 1% (95% CI 0–5%; I2 = 14%) and 4% (95% CI 2–7%; I2 = 40%), respectively. Conclusions: The BeGraft peripheral and peripheral PLUS BECS performed with high technical success and low instability when used for bridging in f/bEVAR. Cautious interpretation is required due to the very low quality of evidence. Full article
(This article belongs to the Special Issue Advances in Vascular and Endovascular Surgery: Second Edition)
Show Figures

Figure 1

21 pages, 12821 KiB  
Article
The Identification and Diagnosis of ‘Hidden Ice’ in the Mountain Domain
by Brian Whalley
Glacies 2025, 2(3), 8; https://doi.org/10.3390/glacies2030008 - 15 Jul 2025
Viewed by 264
Abstract
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and [...] Read more.
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and flow discusses the idea that they consist of ‘mountain permafrost’. However, signs of permafrost-derived ice, such as flow features, have not been identified in these landsystems; talus slopes in the neighbourhoods of glaciers and rock glaciers. An alternative view, whereby rock glaciers are derived from glacier ice rather than permafrost, is demonstrated with examples from various locations in the mountain domain, 𝔻𝕞. A Google Earth and field examination of many rock glaciers shows glacier ice exposed below a rock debris mantle. Ice exposure sites provide ground truth for observations and interpretations stating that rock glaciers are indeed formed from glacier ice. Exposure sites include bare ice at the headwalls of cirques and above debris-covered glaciers; additionally, ice cliffs on the sides of meltwater pools are visible at various locations along the lengths of rock glaciers. Inspection using Google Earth shows that these pools can be traced downslope and their sizes can be monitored between images. Meltwater pools occur in rock glaciers that have been previously identified in inventories as being indictive of permafrost in the mountain domain. Glaciers with a thick rock debris cover exhibit ‘hidden ice’ and are shown to be geomorphological units mapped as rock glaciers. Full article
Show Figures

Figure 1

30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 270
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
by Qi Su, Xiangchen Meng, Lin Sun and Zhongqiang Guo
Remote Sens. 2025, 17(14), 2350; https://doi.org/10.3390/rs17142350 - 9 Jul 2025
Viewed by 400
Abstract
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 [...] Read more.
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 m, leveraging auxiliary variables including vegetation indices, terrain parameters, and land surface reflectance. By establishing non-linear relationships between LST and predictive variables through eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, the proposed framework was rigorously validated using in situ measurements across China’s Heihe River Basin. Comparative analyses demonstrated that integrating multiple vegetation indices (e.g., NDVI, SAVI) with terrain factors yielded superior accuracy compared to factors utilizing land surface reflectance or excessive variable combinations. While slope and aspect parameters marginally improved accuracy in mountainous regions, including them degraded performance in flat terrain. Notably, land surface reflectance proved to be ineffective in snow/ice-covered areas, highlighting the need for specialized treatment in cryospheric environments. This work provides a reference for LST downscaling, with significant implications for environmental monitoring and urban heat island investigations. Full article
Show Figures

Graphical abstract

21 pages, 6046 KiB  
Article
Mechanical Properties of Granular Sea Ice Under Uniaxial Compression: A Comparison of Piled and Level Ice
by Yubo Liu, Qingkai Wang, Peng Lu, Zhijun Li, Zhixing Li, Zhi Zong and Limin Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1302; https://doi.org/10.3390/jmse13071302 - 3 Jul 2025
Viewed by 326
Abstract
The proportion of granular ice in sea ice layers has markedly increased due to global warming. To investigate the uniaxial compressive behavior of granular sea ice, we conducted a series of experiments using natural piled and level ice samples collected from the Bohai [...] Read more.
The proportion of granular ice in sea ice layers has markedly increased due to global warming. To investigate the uniaxial compressive behavior of granular sea ice, we conducted a series of experiments using natural piled and level ice samples collected from the Bohai Sea. A total of 311 specimens were tested under controlled temperature conditions ranging from −15 °C to −2 °C and strain rates varying from 10−5 to 10−2 s−1. The effects of porosity, strain rate, and failure modes were studied. The results show that both the uniaxial compressive strength and uniaxial compressive elastic modulus were dependent on strain rate and porosity. Granular sea ice exhibited a non-monotonic strength dependence on strain rate, with the strength increasing in the ductile regime and decreasing in the brittle regime. In contrast, the elastic modulus increased monotonically with the strain rate. Both the strength and elastic modulus decreased with increasing porosity. Level ice consistently demonstrated higher strength and an elastic modulus than piled ice at equivalent porosities. Unified parametric models were developed to describe both properties across a wide range of strain rates encompassing the ductile-to-brittle (DBT) regime. The experimental results show that, as porosity decreased, the transition strain rate of granular sea ice shifted from 2.34 × 10−3 s−1 at high porosity (45%) to 1.42 × 10−4 s−1 at low porosity (10%) for level ice and 1.87 × 10−3 s−1 to 1.19 × 10−3 s−1 for piled ice. These results were compared with classical columnar ice models. These findings are useful for informing the design of vessel and coastal structures intended for use in ice-covered waters. Full article
Show Figures

Figure 1

22 pages, 3154 KiB  
Article
Impact of Blade Ice Coverage on Wind Turbine Power Generation Efficiency: A Combined CFD and Wind Tunnel Study
by Yang Ji, Jinxiao Wang, Haiming Wen, Chenyang Liu, Yang Liu and Dayong Zhang
Energies 2025, 18(13), 3448; https://doi.org/10.3390/en18133448 - 30 Jun 2025
Viewed by 255
Abstract
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three [...] Read more.
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three ice accretion types, glaze, mixed, and rime, on NACA0012 airfoils are quantified. Glaze ice at the leading edge induces the most severe degradation, reducing lift by 34.9% and increasing drag by 97.2% at 10 m/s. STAR-CCM+ analyses reveal critical pressure anomalies and ice morphology-dependent flow separation patterns. These findings inform the optimization of anti-icing strategies for cold-climate wind farms. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 545
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

17 pages, 1214 KiB  
Article
EECNet: An Efficient Edge Computing Network for Transmission Line Ice Thickness Recognition
by Yu Zhang, Yangyang Jiao, Yinke Dou, Liangliang Zhao, Qiang Liu and Yang Liu
Processes 2025, 13(7), 2033; https://doi.org/10.3390/pr13072033 - 26 Jun 2025
Viewed by 324
Abstract
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper [...] Read more.
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper introduces an Efficient Edge Computing Network (EECNet) specifically designed for identifying ice thickness on transmission lines. Firstly, pruning is applied to the Efficient Neural Network (ENet), removing redundant components within the encoder to decrease both the computational complexity and the number of parameters in the model. Secondly, a Dilated Asymmetric Bottleneck Module (DABM) is proposed. By integrating different types of convolutions, this module effectively strengthens the model’s capability to extract features from ice-covered transmission lines. Then, an Efficient Partial Conv Module (EPCM) is designed, introducing an adaptive partial convolution selection mechanism that innovatively combines attention mechanisms with partial convolutions. This design enhances the model’s ability to select important feature channels. The method involves segmenting ice-covered images to obtain iced regions and then calculating the ice thickness using the iced area and known cable parameters. Experimental validation on an ice-covered transmission line dataset shows that EECNet achieves a segmentation accuracy of 92.7% in terms of the Mean Intersection over Union (mIoU) and an F1-Score of 96.2%, with an ice thickness recognition error below 3.4%. Compared to ENet, the model’s parameter count is reduced by 41.7%, and the detection speed on OrangePi 5 Pro is improved by 27.3%. After INT8 quantization, the detection speed is increased by 26.3%. These results demonstrate that EECNet not only enhances the recognition speed on edge equipment but also maintains high-precision ice thickness recognition. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop