Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = hyperelastic models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4320 KiB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 - 31 Jul 2025
Viewed by 150
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

16 pages, 4165 KiB  
Article
A Comprehensive Method with Verification for Characterizing the Visco-Hyperelastic Material Model of Polyurethane Foam of Passenger Car Seats
by Jianjiao Deng, Zunming Wang, Yi Qiu, Xu Zheng, Zuofeng Pan, Jingbao Zhao, Yuting Ma, Yabao Li and Chi Liu
Materials 2025, 18(15), 3526; https://doi.org/10.3390/ma18153526 - 28 Jul 2025
Viewed by 202
Abstract
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive [...] Read more.
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive experimental and analytical method to characterize the visco-hyperelastic properties of seat-grade polyurethane foam. Quasi-static and dynamic compression tests were conducted on foam blocks to obtain load–deflection curves and dynamic stiffness. A visco-hyperelastic material model was developed, where the hyperelastic response was derived via the hereditary integral and difference-stress method, and viscoelastic behavior was captured using a Prony series fitted to dynamic stiffness data. The model was validated using finite element simulations, showing good agreement with experimental results in both static and dynamic conditions. The proposed method enables accurate characterization of the visco-hyperelastic material properties of seat-grade polyurethane foam. Full article
Show Figures

Graphical abstract

16 pages, 2882 KiB  
Article
Synergistic Enhancement of Fire Retardancy and Mechanical Performance in Silicone Foams Using Halogen-Free Fillers
by Seong-Jun Park, Tae-Soon Kwon, Hee-Joong Sim, Yeon-Gyo Seo, Kyungwho Choi and Hong-Lae Jang
Fire 2025, 8(7), 243; https://doi.org/10.3390/fire8070243 - 23 Jun 2025
Viewed by 362
Abstract
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with [...] Read more.
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with unfilled silicone foam under both static and dynamic loading conditions. Uniaxial compression and simple shear tests were conducted to assess mechanical behavior, and a second-order Ogden model was employed to represent hyperelasticity in the finite element analysis. Fire performance was evaluated using cone calorimeter tests in accordance with ISO 5660-1. The results showed a 53.6% reduction in peak heat release rate (PHRR) and a 48.1% decrease in MARHE upon the addition of flame retardants, satisfying relevant fire safety standards. Although the addition of fillers increased the compressive stiffness and reduced rebound resilience, static comfort indices remained within acceptable ranges. These findings confirm that halogen-free filled silicone foams exhibit significantly enhanced fire retardancy while maintaining sufficient mechanical integrity and seating comfort, demonstrating their potential as eco-friendly alternatives to conventional polyurethane foams in large-scale transportation applications. Full article
Show Figures

Graphical abstract

13 pages, 1018 KiB  
Article
Nonlinear Shear Waves in Compressible Media: Occurrence of Strong Shocks
by Vladimir Bratov and Sergey V. Kuznetsov
Mathematics 2025, 13(12), 1991; https://doi.org/10.3390/math13121991 - 17 Jun 2025
Viewed by 300
Abstract
Apparently for the first time, shear shock wave fronts (shear shocks) are observed in a hyperfoam at the propagation of shear waves. The hyperfoam is modelled by the Ogden compressible hyperelastic potential. A possible appearance of the shear shocks may explain the kinetic [...] Read more.
Apparently for the first time, shear shock wave fronts (shear shocks) are observed in a hyperfoam at the propagation of shear waves. The hyperfoam is modelled by the Ogden compressible hyperelastic potential. A possible appearance of the shear shocks may explain the kinetic and strain energy attenuation along with heat release at the propagation of shear waves in hyperfoams. The analysis is based on the Cauchy formalism for equations of motion, equations of energy balance, and FE analysis for solutions of the constructed nonlinear hyperbolic equation. Full article
(This article belongs to the Special Issue Computational Mathematics: Advanced Methods and Applications)
Show Figures

Figure 1

23 pages, 3178 KiB  
Article
Influence of Temperature on Hyperelastic Mechanical Behavior of Accelerated Aged EPDM Rubber
by Zhaonan Xie, Dong Jia, Xicheng Huang, Kai Zhang, Shunping Yan, Junhong Chen, Jiaxing Li and Weizhou Zhong
Polymers 2025, 17(12), 1626; https://doi.org/10.3390/polym17121626 - 11 Jun 2025
Viewed by 1222
Abstract
EPDM (Ethylene Propylene Diene Monomer) rubber is a crucial engineering material, and its mechanical behavior changes with aging duration and ambient temperature. The effects of temperature on the hyperelastic behavior of unaged and aged EPDM rubber are investigated by conducting accelerated aging tests [...] Read more.
EPDM (Ethylene Propylene Diene Monomer) rubber is a crucial engineering material, and its mechanical behavior changes with aging duration and ambient temperature. The effects of temperature on the hyperelastic behavior of unaged and aged EPDM rubber are investigated by conducting accelerated aging tests under constant compression and uniaxial compression tests at different temperatures. The experimental results show that prolonged aging induces EPDM rubber to exhibit an approximately linear hardening trend under a constant temperature. For aged EPDM rubber, its stiffness initially decreases and then increases with test temperature. The stress hardening factor was introduced to characterize the influence of the test temperature on the aging effect. The factor exhibits a decreasing trend and then an increasing trend with respect to compression test temperature. The curve of the stress hardening factor versus temperature is approximately a quadratic function. To fit the results, a Neo–Hooke model, a Mooney–Rivlin model, and an improved Mooney–Rivlin model were tested for their fit with the EPDM rubber compression data, covering different experimental conditions. The improved Mooney–Rivlin model had the most consistent results with the experimental data. Based on the experimental results, the parameters of the improved Mooney–Rivlin model were extended to model the effects of temperature and aging time. The proposed constitutive model can effectively describe the hyperelastic behavior of aged EPDM rubber tested at different temperatures. Full article
Show Figures

Figure 1

23 pages, 2941 KiB  
Article
FEM-Based Modelling and AI-Enhanced Monitoring System for Upper Limb Rehabilitation
by Filippo Laganà, Diego Pellicanò, Mariangela Arruzzo, Danilo Pratticò, Salvatore A. Pullano and Antonino S. Fiorillo
Electronics 2025, 14(11), 2268; https://doi.org/10.3390/electronics14112268 - 31 May 2025
Cited by 1 | Viewed by 607
Abstract
The integration of physical modelling, artificial intelligence (AI), and embedded electronics represents a promising direction in the development of intelligent systems for rehabilitation monitoring. Most existing approaches, however, treat biomechanical simulation and sensor-based AI separately, without leveraging their potential synergy. This study introduces [...] Read more.
The integration of physical modelling, artificial intelligence (AI), and embedded electronics represents a promising direction in the development of intelligent systems for rehabilitation monitoring. Most existing approaches, however, treat biomechanical simulation and sensor-based AI separately, without leveraging their potential synergy. This study introduces a hybrid framework for upper limb rehabilitation that combines finite element modelling (FEM), AI-based trend classification, and a custom-designed electronic system for real-time signal acquisition and wireless data transmission. A mechanical model, developed in COMSOL 6.2 Multiphysics, simulates the interaction between a robotic glove and a deformable latex sphere. The latex material is described using a two-parameter Mooney–Rivlin hyperelastic formulation to capture large nonlinear deformations under realistic contact conditions. The high-fidelity simulation data are used to validate the signal acquisition chain and to train a supervised AI algorithm capable of classifying rehabilitation progress—whether improving or worsening—based on biomechanical features. An integrated electronic prototype enables seamless data flow to a cloud-based monitoring platform, supporting real-time feedback and adaptability. The classification algorithm demonstrates robust performance across different test conditions, while the electronic system confirms its applicability in rehabilitation settings. The novelty of this paper lies in the closed-loop integration of FEM-based simulation, AI-driven analysis, and embedded electronics into a unified monitoring architecture. This intelligent and non-invasive approach provides a scalable tool for tracking motor recovery and enhancing therapy effectiveness through adaptive, feedback-driven interventions. Full article
(This article belongs to the Special Issue Circuit Design for Embedded Systems)
Show Figures

Figure 1

20 pages, 5109 KiB  
Article
Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure
by Yong Xia, Jiaqi Wu, Xingyi Yang, Long Qu and Hongqiang Xie
Appl. Sci. 2025, 15(11), 6132; https://doi.org/10.3390/app15116132 - 29 May 2025
Viewed by 330
Abstract
The high water head of some pumped storage power stations will induce the cracking of the concrete lining of their diversion tunnel and the leakage of high-pressure water, which will affect the safety of the tunnel and the surrounding rock. At present, there [...] Read more.
The high water head of some pumped storage power stations will induce the cracking of the concrete lining of their diversion tunnel and the leakage of high-pressure water, which will affect the safety of the tunnel and the surrounding rock. At present, there is no solution to the problem of impermeability of concrete materials after cracking. This paper proposes a composite lining to solve this problem. The composite lining with modified polydimethylsiloxane coating can effectively prevent high-pressure water, but its crack resistance needs to be further studied. Therefore, the tensile mechanical properties, constitutive relationship of modified polydimethylsiloxane impermeable coating, and the crack resistance mechanical properties of modified polydimethylsiloxane impermeable composite lining were studied by laboratory tests and numerical simulations. The results show that the true fracture elongation of the modified polydimethylsiloxane impermeable coating is as high as 118.98%, and its mechanical behavior can be described by a simplified polynomial hyperelastic constitutive model. The in situ stress will affect the crack width of the concrete lining. When the lateral pressure coefficient is less than 1, the crack width decreases with the increase in the lateral pressure coefficient. When the lateral pressure coefficient is greater than 1, the crack width increases with the increase in the lateral pressure coefficient. To prevent the cracking of modified polydimethylsiloxane coating, its spraying thickness needs to increase with the increase in crack width. The ratio of the coating’s thickness to crack width is recommended from 0.162 to 1.930 for internal water pressure from 1 MPa to 10 MPa, respectively. The suggestion provides a reference for designing the impermeable composite lining structure subjected to high internal water pressure. Full article
Show Figures

Figure 1

16 pages, 1719 KiB  
Article
Finite Element Analysis of Ocular Impact Forces and Potential Complications in Pickleball-Related Eye Injuries
by Cezary Rydz, Jose A. Colmenarez, Kourosh Shahraki, Pengfei Dong, Linxia Gu and Donny W. Suh
Bioengineering 2025, 12(6), 570; https://doi.org/10.3390/bioengineering12060570 - 26 May 2025
Viewed by 517
Abstract
Purpose: Pickleball, the fastest-growing sport in the United States, has seen a rapid increase in participation across all age groups, particularly among older adults. However, the sport introduces specific risks for ocular injuries due to the unique dynamics of gameplay and the physical [...] Read more.
Purpose: Pickleball, the fastest-growing sport in the United States, has seen a rapid increase in participation across all age groups, particularly among older adults. However, the sport introduces specific risks for ocular injuries due to the unique dynamics of gameplay and the physical properties of the pickleball. This study aims to explore the mechanisms of pickleball-related eye injuries, utilizing finite element modeling (FEM) to simulate ocular trauma and better understand injury mechanisms. Methods: A multi-modal approach was employed to investigate pickleball-related ocular injuries. Finite element modeling (FEM) was used to simulate blunt trauma to the eye caused by a pickleball. The FEM incorporated detailed anatomical models of the periorbital structures, cornea, sclera, and vitreous body, using hyperelastic material properties derived from experimental data. The simulations evaluated various impact scenarios, including changes in ball velocity, angle of impact, and material stiffness, to determine the stress distribution, peak strain, and deformation in ocular structures. The FEM outputs were correlated with clinical findings to validate the injury mechanisms. Results: The FE analysis revealed that the rigid, hard-plastic construction of a pickleball results in concentrated stress and strain transfer to ocular structures upon impact. At velocities exceeding 30 mph, simulations showed significant corneal deformation, with peak stresses localized at the limbus and anterior sclera. Moreover, our results show a significant stress applied to lens zonules (as high as 0.35 MPa), leading to potential lens dislocation. Posterior segment deformation was also observed, with high strain levels in the retina and vitreous, consistent with clinical observations of retinal tears and vitreous hemorrhage. Validation against reported injuries confirmed the model’s accuracy in predicting both mild injuries (e.g., corneal abrasions) and severe outcomes (e.g., hyphema, globe rupture). Conclusions: Finite element analysis provides critical insights into the biomechanical mechanisms underlying pickleball-related ocular injuries. The findings underscore the need for preventive measures, particularly among older adults, who exhibit age-related vulnerabilities. Education on the importance of wearing protective eyewear and optimizing game rules to minimize high-risk scenarios, such as close-range volleys, is essential. Further refinement of the FEM, including parametric studies and integration of protective eyewear, can guide the development of safety standards and reduce the socio-economic burden of these injuries. Full article
(This article belongs to the Special Issue Biomechanics Studies in Ophthalmology)
Show Figures

Figure 1

20 pages, 7144 KiB  
Article
Biodynamic Characteristics and Blood Pressure Effects of Stanford Type B Aortic Dissection Based on an Accurate Constitutive Model
by Yiwen Wang, Libo Xin, Lijie Zhou, Xuefeng Wu, Jinong Zhang and Zhaoqi Wang
Appl. Sci. 2025, 15(11), 5853; https://doi.org/10.3390/app15115853 - 23 May 2025
Viewed by 368
Abstract
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, [...] Read more.
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, ignoring the complex biomechanical factors of the vascular lumen. This study elucidates key biomechanical mechanisms by which hypertension promotes primary AD progression using multiscale modeling. First, based on experimental data from longitudinal and circumferential uniaxial tensile testing of porcine aortic walls (5–7-month-old specimens), a constitutive model of the aortic wall was developed using the Holzapfel–Gasser–Ogden (HGO) framework. The material parameters were calibrated via inverse optimization in ABAQUS-ISIGHT, achieving close alignment with mechanical properties of the human aorta. Using this validated model to define the hyperelastic properties of the aortic wall, a multiphysics coupling platform was constructed in COMSOL Multiphysics 6.2, integrating computational fluid dynamics (CFD) and fluid–structure interaction (FSI) algorithms. This framework systematically quantified the effects of blood pressure (bp) fluctuations on compressive stresses, von Mises stresses, and deformation of the intimal flap within the AD lesion region. With constant blood rheology, elevated blood pressure enhances wall stresses (compressive and von Mises), and intima-media sheet deformation, this can trigger initial rupture tears, false lumen dilation, and branch arterial flow obstruction, ultimately deteriorating end-organ perfusion. Full article
Show Figures

Figure 1

36 pages, 900 KiB  
Article
Discrete Physics-Informed Training for Projection-Based Reduced-Order Models with Neural Networks
by Nicolas Sibuet, Sebastian Ares de Parga, Jose Raul Bravo and Riccardo Rossi
Axioms 2025, 14(5), 385; https://doi.org/10.3390/axioms14050385 - 20 May 2025
Viewed by 1194
Abstract
This paper presents a physics-informed training framework for projection-based Reduced-Order Models (ROMs). We extend the original PROM-ANN architecture by complementing snapshot-based training with a FEM-based, discrete physics-informed residual loss, bridging the gap between traditional projection-based ROMs and physics-informed neural networks (PINNs). Unlike conventional [...] Read more.
This paper presents a physics-informed training framework for projection-based Reduced-Order Models (ROMs). We extend the original PROM-ANN architecture by complementing snapshot-based training with a FEM-based, discrete physics-informed residual loss, bridging the gap between traditional projection-based ROMs and physics-informed neural networks (PINNs). Unlike conventional PINNs that rely on analytical PDEs, our approach leverages FEM residuals to guide the learning of the ROM approximation manifold. Our key contributions include the following: (1) a parameter-agnostic, discrete residual loss applicable to nonlinear problems, (2) an architectural modification to PROM-ANN improving accuracy for fast-decaying singular values, and (3) an empirical study on the proposed physics-informed training process for ROMs. The method is demonstrated on a nonlinear hyperelasticity problem, simulating a rubber cantilever under multi-axial loads. The main accomplishment in regards to the proposed residual-based loss is its applicability on nonlinear problems by interfacing with FEM software while maintaining reasonable training times. The modified PROM-ANN outperforms POD by orders of magnitude in snapshot reconstruction accuracy, while the original formulation is not able to learn a proper mapping for this use case. Finally, the application of physics-informed training in ANN-PROM modestly narrows the gap between data reconstruction and ROM accuracy; however, it highlights the untapped potential of the proposed residual-driven optimization for future ROM development. This work underscores the critical role of FEM residuals in ROM construction and calls for further exploration on architectures beyond PROM-ANN. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

16 pages, 2251 KiB  
Article
Thermo-Oxidative Aging Effects on Hyperelastic Behavior of EPDM Rubber: A Constitutive Modeling Approach
by Zhaonan Xie, Xicheng Huang, Kai Zhang, Shunping Yan, Junhong Chen, Ren He, Jiaxing Li and Weizhou Zhong
Materials 2025, 18(10), 2236; https://doi.org/10.3390/ma18102236 - 12 May 2025
Cited by 1 | Viewed by 557
Abstract
The effect of thermo-oxidative aging on the hyperelastic behavior of ethylene propylene diene monomer (EPDM) rubber was investigated by a combined experimental and theoretical modeling approach. Firstly, the uniaxial tensile test of aged and unaged EPDM rubber was carried out. The test results [...] Read more.
The effect of thermo-oxidative aging on the hyperelastic behavior of ethylene propylene diene monomer (EPDM) rubber was investigated by a combined experimental and theoretical modeling approach. Firstly, the uniaxial tensile test of aged and unaged EPDM rubber was carried out. The test results show that the unaged EPDM rubber had the nonlinear large deformation characteristic of a “S” shape. The stiffness of the EPDM rubber was found to increase with the aging time and aging temperature. Then, in order to quantitatively characterize the hyperelastic behavior of unaged EPDM rubber, the fitting performances of the Mooney–Rivlin, Arruda–Boyce, and Ogden models were compared based on a uniaxial tensile stress–strain curve. The results show that the Ogden model provided a more accurate representation of the hyperelastic behavior of unaged EPDM rubber. Subsequently, the Dakin dynamic equation was adopted to associate the parameters of the Ogden model with the aging time, and the Arrhenius relationship was utilized to introduce the aging temperature into the rate term of the Dakin dynamic equation, thereby establishing an improved Ogden constitutive model. This improved model expanded the Ogden model’s ability to explain aging time and aging temperature. Finally, the improved model prediction results and the test results were compared, and they indicate that the proposed improved Ogden constitutive model can accurately describe the hyperelastic behavior of aged and unaged EPDM rubber. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

17 pages, 6209 KiB  
Article
Numerical Simulation of Blood Clot Extraction Process Using Aspiration-Based Mechanical Thrombectomy
by Sreenivas Venguru, Shyam Sunder Yadav, Tanmaya Mahapatra and Sanjay Kumar Kochar
Fluids 2025, 10(5), 124; https://doi.org/10.3390/fluids10050124 - 9 May 2025
Viewed by 512
Abstract
This paper simulates the blood clot extraction process inside an idealized cylindrical blood vessel model using the aspiration-based thrombectomy technique. A fully Eulerian technique is used within the finite volume method where incompressible Navier–Stokes equations are solved in the fluid region. In contrast, [...] Read more.
This paper simulates the blood clot extraction process inside an idealized cylindrical blood vessel model using the aspiration-based thrombectomy technique. A fully Eulerian technique is used within the finite volume method where incompressible Navier–Stokes equations are solved in the fluid region. In contrast, the Cauchy stress equation is solved in the clot region. Blood is assumed to be a Newtonian fluid, while the clot is either hyperelastic or viscoelastic material. In the hyperelastic formulation, the clot deformation is calculated based on the left Cauchy–Green deformation tensor, while the stresses are based on the linear Mooney–Rivlin model. In the viscoelastic formulation, the Oldroyd B model is used within the log conformation approach to calculate the viscoelastic stresses in the clot. The interface between the blood and the clot is tracked with the help of the geometric volume-of-fluid method. We focus on the role of flow variables like the pressure, velocity, and proximity between the clot and the catheter tip to successfully capture the clot under catheter suction. We observe that, once the clot is attracted to the catheter port due to pressure forces, the viscous stresses try to drag it inside the catheter. On the other hand, if the clot is not initially attracted, it is carried downstream by the viscous stresses. If the suction velocity is low (∼0.2 m/s), the clot cannot be sucked inside the catheter, even if it is touching the catheter. At a higher suction velocity of 0.4 m/s, the suction effect is strong enough to capture the clot despite the larger initial distance from the catheter. Hence, the pressure distribution and viscous stresses play essential roles in the suction or escape of the clot during the thrombectomy process. Also, the viscoelastic model predicts the rupture of the clot inside the catheter during suction. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

17 pages, 7762 KiB  
Article
Dynamic Compressive Behavior of a Novel Bioinspired Gradient Negative Poisson’s Ratio Sign-Switching Metamaterial Made of Thermoplastic Polyurethane
by Yiting Guan, Xing Luo, Weidong Cao, Xiao Du, Mingkun Du, Zhiwei Zhou and Xiaofei Cao
Polymers 2025, 17(9), 1181; https://doi.org/10.3390/polym17091181 - 26 Apr 2025
Viewed by 512
Abstract
Inspired by Scylla serrata, a novel thermoplastic polyurethane (TPU) negative Poisson’s ratio sign-switching metamaterial is proposed, and the corresponding original and gradient structures (i.e., OPSM and GPSM) are created. Numerical simulation is utilized to simulate the quasi-static and dynamic compression behavior of the [...] Read more.
Inspired by Scylla serrata, a novel thermoplastic polyurethane (TPU) negative Poisson’s ratio sign-switching metamaterial is proposed, and the corresponding original and gradient structures (i.e., OPSM and GPSM) are created. Numerical simulation is utilized to simulate the quasi-static and dynamic compression behavior of the proposed structures considering the rate-dependent properties, elastoplastic response, and nonlinear contact. The neo-Hookean hyperelastic constitutive model and the Prony series are adopted to model the target structures. Finite element results are validated through experimental results. Parametric studies are conducted to study the effects of gradient characteristics and loading velocities on the mechanical behavior and Poisson’s ratio of the structures. Testing results indicate that the proposed novel bioinspired structure patterns exhibit fascinating mechanical behavior and interesting negative Poisson’s ratio sign-switching characteristics, which would provide the design guidance for the development and application of bioinspired structural materials. Full article
(This article belongs to the Special Issue Advanced Biomimetic Polymer Materials)
Show Figures

Figure 1

27 pages, 17457 KiB  
Article
High-Energy Low-Velocity Impact Behavior of Rubber-Coated Sandwich Composite Structure with Buoyancy Material Core: Experimental and Numerical Investigation
by Yi Zhu, Zhiyuan Mei, Haitao Li, Hongbo Tao and Guotao Chen
Materials 2025, 18(8), 1791; https://doi.org/10.3390/ma18081791 - 14 Apr 2025
Viewed by 313
Abstract
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the [...] Read more.
The dynamic response and failure of rubber-coated sandwich composite structures with buoyancy material core (RC-BMC-SCS) subjected to high-energy low-velocity impacts were experimentally and numerically investigated. Six types of BMC-SCSs were designed and manufactured, and high-energy low-velocity impact experiments were performed. Based on the Mohr-Coulomb theory and the Ogden hyperelasticity constitutive model, a low-velocity impact finite element analysis model was developed. The results indicate that BMC-SCS damage stages could be divided into: (1) matrix damage, (2) core cracks, (3) debonding and fiber breakage. Three distinct damage stages of the RC-BMC-SCS were revealed: (1) rubber layer energy absorption, (2) core cracks, (3) debonding. The rubber layer can enhance the damage threshold by approximately 100% compared to BMC-SCS. However, rubber energy absorption capacity has an upper limit. Additionally, the larger the curvature of the BMC-SCS, the higher the initial stiffness of the structure and the larger the impact damage area. The results of this study provide valuable insights for the multifunctional design of composite deep-sea marine structures. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

28 pages, 8808 KiB  
Article
Design and Dimension Optimization of Rigid–Soft Hand Function Rehabilitation Robots
by Rui Zhang, Meng Ning, Yuqian Wang and Jun Yang
Machines 2025, 13(4), 311; https://doi.org/10.3390/machines13040311 - 11 Apr 2025
Viewed by 528
Abstract
The growing population of hand dysfunction patients necessitates advanced rehabilitation technologies. Current robotic solutions face limitations in motion compatibility and systematic design frameworks. This study develops a rigid–soft coupling rehabilitation robot integrating linkage mechanisms with soft components. A machine vision system captures natural [...] Read more.
The growing population of hand dysfunction patients necessitates advanced rehabilitation technologies. Current robotic solutions face limitations in motion compatibility and systematic design frameworks. This study develops a rigid–soft coupling rehabilitation robot integrating linkage mechanisms with soft components. A machine vision system captures natural grasping trajectories, analyzed through polynomial regression. Hierarchical constraint modeling and an improved artificial bee colony algorithm optimize linkage dimensions and control strategies, achieving enhanced human–robot kinematic matching. Finite element simulations using a Yeoh hyperelastic model refine soft component geometry for balance compliance and coordination. Prototype validation demonstrates high-precision trajectory tracking, grasping across 20–70 mm objects, and steady fingertip forces during training. Experimental results confirm the system’s ability to replicate physiological motion patterns and adapt to multiple rehabilitation scenarios. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop