Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure
Abstract
1. Introduction
2. Constitutive Relation of Modified Polydimethylsiloxane Material
2.1. Direct Tensile Test
- (1)
- Specimen preparation
- (2)
- Experiment analysis method
- (3)
- Test result analysis
2.2. Identification of Constitutive Model
2.3. Numerical Simulation of Tensile Test
3. Cracking Simulation and Cracking Damage Range Analysis
3.1. Finite Element Model
3.2. Analysis of Tunnel Cracking Width
4. Failure of Modified Polydimethylsiloxane Impermeable Coating Under Internal Water Pressure
4.1. Influence of the Internal Water Pressure
4.2. Influence of the Coating’s Thickness
5. Discussion on the Thickness of Impermeable Coating
6. Conclusions
- (1)
- The modified polydimethylsiloxane exhibits exceptional hyperelastic behavior with a true fracture elongation of 118.98%. The simplified polynomial hyperelastic constitutive model (RP-N2) accurately captures its non-linear mechanical response, achieving a correlation coefficient (R2) of 0.999 with experimental data. This behavior enables the coating to accommodate large deformations in cracked concrete linings while maintaining impermeability. Furthermore, the RP-N2 model’s computational efficiency enables rapid structural assessments, maintaining 99% accuracy in strain prediction.
- (2)
- The crack width of lining structure decreases with the increase in buried depth, and the crack width gradually maintains invariance after reaching a certain buried depth. When the lateral pressure coefficient is less than 1, the maximum crack width decreases with the increase in the lateral pressure coefficient; when the lateral pressure coefficient is greater than 1, the maximum crack width increases with the increase in the lateral pressure coefficient.
- (3)
- The derived critical thickness-to-width ratios provide a quantifiable design framework. According to different internal water pressure conditions, a set of thickness-to-width ratios are suggested to determine the thickness of the modified polydimethylsiloxane impermeable coating in tunnel engineering. The proposed methodology addresses practical challenges in ultra-high-pressure tunnel design. By correlating the polydimethylsiloxane thickness with crack width and lateral pressure coefficients, engineers can optimize coating specifications for specific geological and hydraulic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quaranta, E.; Boes, M.R.; Hunt, D.J.; Szabò, S.; Tattini, J.; Pistocchi, A. Considerations on the existing capacity and future potential for energy storage in the European Union’s hydropower reservoirs and pumped-storage hydropower. J. Energy Storage 2024, 104, 114431. [Google Scholar] [CrossRef]
- Hunt, D.J.; Silva, V.C.; Fonseca, E.; Freitas, M.A.V.; Brandão, R. Role of pumped hydro storage plants for flood control. J. Energy Storage 2024, 104, 114496. [Google Scholar] [CrossRef]
- Liu, J. Study on Mechanical Properties of Waterproof Film and Interface Between Layers of Sprayed Waterproof Lining Structure in Tunnel. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2021. (In Chinese). [Google Scholar]
- Zeng, X. Study on hydraulic fracturing mechanism under high internal water pressure based on discrete element method. Railw. Constr. Technol. 2022, 6–9+54. (In Chinese) [Google Scholar]
- Yasuda, M.; Watanabe, S. How to Avoid Severe Incidents at Pumped Storage Power Plants. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 112002. [Google Scholar] [CrossRef]
- Thomas, A.; de Battista, N.; Elshafie, M.; Viggiani, G. Back-analysis of sprayed concrete lined (SCL) tunnel junctions at Liverpool Street Crossrail station. Tunn. Undergr. Space Technol. 2023, 141, 105391. [Google Scholar] [CrossRef]
- Pelz, U.; Karlovšek, J. Spray-applied waterproofing membranes in tunnelling: A construction perspective. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2023, 142, 105409. [Google Scholar] [CrossRef]
- He, B.; Jiang, Y.; Zhao, J.; Liu, J.; Pei, H. Study on the influence of different waterproof film interface parameters on the mechanical properties of spray film waterproof lining structure. Highw. Traffic Technol. 2023, 39, 161–168. (In Chinese) [Google Scholar]
- Bloodworth, A.; Jiang, S. Numerical analysis and capacity evaluation of composite sprayed concrete lined tunnels. Undergr. Space 2018, 3, 87–108. [Google Scholar] [CrossRef]
- Lee, K.; Kim, D.; Chang, S.-H.; Choi, S.-W.; Park, B.; Lee, C. Numerical approach to assessing the contact characteristics of a polymer-based waterproof membrane. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2018, 79, 242–249. [Google Scholar] [CrossRef]
- Johnson, R.P.; Swallow, F.E.; Psomas, S. Structural properties and durability of a sprayed waterproofing membrane for tunnels. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2016, 60, 41–48. [Google Scholar] [CrossRef]
- Vogel, F.; Sovják, R.; Pešková, Š. Static response of double shell concrete lining with a spray-applied waterproofing membrane. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2017, 68, 106–112. [Google Scholar] [CrossRef]
- Su, J.; Alan, B. Determination of the stress-strain demand curve of the sprayed waterproofing membrane interface in composite SCL tunnels. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2023, 142, 105408. [Google Scholar] [CrossRef]
- Liang, W. Durability of Road and Bridge Concrete and Spray-Coating Waterproof Material. RCMA 2021, 31, 227–235. [Google Scholar] [CrossRef]
- Baniasadi, H.; Äkräs, L.; Madani, Z.; Silvenius, F.; Fazeli, M.; Lipponen, S.; Vapaavuori, J.; Seppälä, J. Development and characterization of polylactic acid/starch biocomposites—From melt blending to preliminary life cycle assessment. Int. J. Biol. Macromol. 2024, 279, 135173. [Google Scholar] [CrossRef]
- Nuge, T.; Fazeli, M.; Baniasadi, H. Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatment. Int. J. Biol. Macromol. 2024, 275, 133480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tang, P.; Tang, Y.; Yang, K.; Wang, Q. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection. Polymers 2023, 15, 2076. [Google Scholar] [CrossRef]
- Jiang, S.; Bloodworth, A. Simulating composite behavior in SCL tunnels with sprayed waterproofing membrane interface: A state-of-the-art review. Eng. Struct. 2019, 191, 698–710. [Google Scholar]
- Sarva, S.S.; Deschanel, S.; Boyce, M.C.; Chen, W. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208–2213. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, H.; He, H.; Deng, Q. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range. Compos. Struct. 2019, 222, 110923. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, H.; Sun, M.; Lv, X. Tensile Mechanical Properties and Dynamic Constitutive Model of Polyurea Elastomer under Different Strain Rates. Polymers 2022, 14, 3579. [Google Scholar] [CrossRef]
- Qi, H.J.; Boyce, M.C. Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J. Mech. Phys. Solids 2004, 52, 2187–2205. [Google Scholar] [CrossRef]
- Shim, J.; Mohr, D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. Int. J. Impact Eng. 2009, 36, 1116–1127. [Google Scholar] [CrossRef]
- Jabbar, M.; Adnan, M.; Shaker, K.; Abdullah, T.; Nawab, Y.; Hussain, R.; Malik, A.U. Strength and durability that last—Mechanical properties of polyurea and polyurethane coated composites. Polym. Compos. 2023, 44, 4324–4335. [Google Scholar] [CrossRef]
- Cui, J.; Shi, Y.; Zhang, X.; Huang, W.; Ma, M. Experimental study on the tension and puncture behavior of spray polyurea at high strain rates. Polym. Test. 2021, 93, 106863. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Y.; Wang, Y.; Wang, J. An abrasion-resistant, photothermal, superhydrophobic anti-icing coating prepared by polysiloxane-modified carbon nanotubes and fluorine-silicone resin. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129335. [Google Scholar] [CrossRef]
- Tan, B.; Qu, L.; Xia, Y.; Yang, X.; Su, B.; Wu, J.; Xiao, M. Experimental Study on Improving the Impermeability of Concrete under High-Pressure Water Environments Using a Polymer Coating. Appl. Sci. 2024, 14, 8507. [Google Scholar] [CrossRef]
- He, T.; He, Z.; Zhao, B. The Concrete Protective Project of Diversion Tunnel of Guangzhou Pumped Storage Power Station. Hydropower Pumped Storage 2017, 3, 87–90. (In Chinese) [Google Scholar]
- Li, B.; Zhang, J.; Liu, X.; Meng, T. Sealing and anti-seepage polyurea coating design method based on nonlinear FEM simulation. Eng. Comput. 2024, 41, 2289–2309. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Liu, X.; Meng, T. Investigation of a novel hydraulic tunnel composite lining with polyurea coating interlayer. Eng. Comput. 2024, 41, 1640–1671. [Google Scholar] [CrossRef]
Number | Maximum Tension (N) | Maximum Displacement (mm) |
---|---|---|
S1 | 20.544 | 89.953 |
S2 | 24.326 | 94.152 |
Property | Nominated Stress-Strain | True Stress-Strain |
---|---|---|
Fracture strength (MPa) | 2.71 | 8.90 |
Fracture elongation (%) | 228.69 | 118.98 |
Initial elastic modulus (MPa) | 0.97 | 1.37 |
Elastic modulus of secant (MPa) | 1.11 | 7.36 |
Method | Constitutive Relation | Parameter | |||
---|---|---|---|---|---|
Nominated stress strain | Linear elasticity | Elastic modulus | Poisson’s ratio | \ | \ |
1.11 MPa | 0.38 | \ | \ | ||
Real stress strain | Hyperelasticity | C10 | C20 | D1 | D2 |
361,376.7 | 4428.9 | 0 | 0 |
Evaluation Index | Linear-Elastic Material | Hyperelastic Material | ||
---|---|---|---|---|
Nominal Stress-Strain | Real Stress-Strain | Nominal Stress-Strain | Real Stress-Strain | |
RMSE | 0.203 | 0.428 | 0.049 | 0.062 |
MAE | 0.199 | 0.385 | 0.041 | 0.054 |
R2 | 0.926 | 0.971 | 0.996 | 0.999 |
Material | Density (kg/m3) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
Rock | 2650 | 20.97 | 0.35 |
C25 | 2400 | 28 | 0.2 |
C30 | 2360 | 30 | 0.2 |
Element Type | Normal Stiffness (GPa) | Tangential Stiffness (GPa) | Normal Crack Initiation Stress (MPa) | Tangential Crack Initiation Stress (MPa) | Normal Fracture Energy (J/m3) | Tangential Fracture Energy (J/m3) |
---|---|---|---|---|---|---|
Cohesive-ROCK | 20,970 | 20,970 | 3.306 | 41.390 | 5.212 | 816.944 |
Cohesive-C25 | 28,000 | 28,000 | 1.780 | 2.500 | 1.132 | 2.232 |
Cohesive-C30 | 30,000 | 30,000 | 2.010 | 2.850 | 1.347 | 2.708 |
Internal Water Pressure (MPa) | Critical Thickness-to-Width Ratio α | Internal Water Pressure (MPa) | Critical Thickness-to-Width Ratio α |
---|---|---|---|
1 | 0.162 | 6 | 0.945 |
2 | 0.313 | 7 | 1.025 |
3 | 0.465 | 8 | 1.557 |
4 | 0.609 | 9 | 1.926 |
5 | 0.731 | 10 | 1.930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Wu, J.; Yang, X.; Qu, L.; Xie, H. Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure. Appl. Sci. 2025, 15, 6132. https://doi.org/10.3390/app15116132
Xia Y, Wu J, Yang X, Qu L, Xie H. Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure. Applied Sciences. 2025; 15(11):6132. https://doi.org/10.3390/app15116132
Chicago/Turabian StyleXia, Yong, Jiaqi Wu, Xingyi Yang, Long Qu, and Hongqiang Xie. 2025. "Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure" Applied Sciences 15, no. 11: 6132. https://doi.org/10.3390/app15116132
APA StyleXia, Y., Wu, J., Yang, X., Qu, L., & Xie, H. (2025). Mechanical Behavior and Crack Resistance of Modified Polydimethylsiloxane Impermeable Coating for Concrete Lining Subjected to Ultra-High Internal Pressure. Applied Sciences, 15(11), 6132. https://doi.org/10.3390/app15116132