Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = hydrophobic nanocellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1367 KiB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 - 6 Jul 2025
Viewed by 348
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

32 pages, 60017 KiB  
Article
Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies
by Andrea Macchia, Irene Angela Colasanti, Francesca Irene Barbaccia, Camilla Zaratti, Giuseppe Franchino, Jessica Scarpelli, Miriam Damiano and Federica Valentini
Appl. Sci. 2025, 15(10), 5355; https://doi.org/10.3390/app15105355 - 11 May 2025
Viewed by 635
Abstract
Money Art is a growing contemporary practice where artists transform banknotes into unique visual works. While conceptually powerful, these artworks present significant conservation challenges due to their fragile substrates and complex material compositions. This study investigates the degradation behaviour of UniPosca acrylic markers [...] Read more.
Money Art is a growing contemporary practice where artists transform banknotes into unique visual works. While conceptually powerful, these artworks present significant conservation challenges due to their fragile substrates and complex material compositions. This study investigates the degradation behaviour of UniPosca acrylic markers applied on zero-euro banknotes, drawing on the techniques of artist RichardHTT, and explores bio-based protective strategies suitable for their preservation. Laboratory samples were prepared to replicate the original artwork and subjected to accelerated ageing. A multi-analytical approach was employed, including multispectral imaging, Fourier trasform infrared (FTIR) and Raman spectroscopy, and scanning electron microscopy (SEM-EDS) colorimetric analysis. Thickness and adhesion properties were assessed with contact micrometry and peel tests, while wettability was evaluated through static contact angle measurements. Four biopolymer coatings, chitosan and chitosan–nanocellulose films with varying CNC concentrations, were evaluated for their transparency, mechanical stability, and compatibility with the substrate. Results showed that painted areas, especially those with blue and black pigments, experienced marked degradation, while, after coating application, samples demonstrated improved chromatic stability, hydrophobicity, and adhesion. Importantly, all coatings were fully removable via enzymatic cleaning with α-amylase, confirming their reversibility. This research highlights the potential of chitosan-based biocomposites as conservation materials for non-traditional artworks and contributes to developing tailored, reversible strategies for contemporary art preservation. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

7 pages, 2607 KiB  
Proceeding Paper
Perspective on the Biomimetic Approaches for the Design of Hydrophobic and Antimicrobial Paper Coatings with Hierarchical Surface Structures
by Pieter Samyn
Mater. Proc. 2025, 20(1), 8; https://doi.org/10.3390/materproc2025020008 - 17 Apr 2025
Viewed by 706
Abstract
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should [...] Read more.
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should be incorporated through a combination of selected bio-based materials and the creation of appropriate surface textures enhancing coating performance. The bio-inspired approaches through the replication of hierarchical surface structures with multi-scale dimensional features in combination with selection of appropriate bio-based functional groups offer new concepts for coating design. In this short perspective paper, concepts in the field are illustrated with a focus on the combination of hydrophobic and anti-microbial properties. Based on long-term work with the available toolbox of bio-based building blocks and nanoscale architectures, they can be processed into applicable aqueous suspensions for sprayable paper coatings. The macroscopic roughness profile of paper substrates can be complemented through the decoration of nanoscale bio-based polymer particles of polyhydroxybutyrate or vegetable oil capsules with dimensions in the range of 20–50 nm or 100–500 nm depending on the synthesis conditions. The anti-microbial properties can be provided by the surface modification of nanocellulose with biologically active molecules sourced from nature. Besides the more fundamental issues in design and synthesis, the industrial application of the bio-inspired coatings through spray-coating becomes relevant. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

11 pages, 2055 KiB  
Article
Synergistic Effects of Graphene Oxide and Nanocellulose on Water-Based Drilling Fluids: Improved Filtration and Shale Stabilization
by Yerlan Kanatovich Ospanov and Gulzhan Abdullaevna Kudaikulova
Polymers 2025, 17(7), 949; https://doi.org/10.3390/polym17070949 - 31 Mar 2025
Cited by 1 | Viewed by 633
Abstract
Shale formations pose significant challenges to traditional drilling fluids, including issues such as fluid invasion, cutting dispersion, and shale swelling, contributing to wellbore instability. While oil-based drilling fluids (OBM) effectively address these challenges, concerns over their environmental impact and cost limit their widespread [...] Read more.
Shale formations pose significant challenges to traditional drilling fluids, including issues such as fluid invasion, cutting dispersion, and shale swelling, contributing to wellbore instability. While oil-based drilling fluids (OBM) effectively address these challenges, concerns over their environmental impact and cost limit their widespread adoption. Nanoparticles (NPs) have emerged as a promising frontier for enhancing the performance of water-based drilling fluids (WBDFs) in shale applications. This study examines the effectiveness of water-based drilling fluids (WBDFs) enhanced with a nanocomposite of graphene oxide (GO) and nanocellulose (NC) compared to that of conventional WBDFs. The combination of GO and NC is chosen for its synergistic effects: GO provides enhanced mechanical strength and barrier properties, while NC serves to stabilize the dispersion and improve the compatibility with WBDF matrices. The modification with NC aims to optimize the interaction between GO and the drilling fluid components, enhancing performance in regards to shale inhibition and fluid loss control. This research involved the successful synthesis and characterization of a GO/NC nanocomposite, which underwent examination through FTIR, PSD, and SEM analyses. We also evaluated the filtration properties of water-based drilling fluids (WBDF) enhanced with a graphene oxide/nanocellulose (GO/NC) nanocomposite and compared the results to those for conventional WBDF. Filtration performance was assessed under both low-temperature, low-pressure (LTLP) and high-temperature, high-pressure (HTHP) conditions, and contact angle measurements were conducted to examine the wettability of the shale. The results demonstrated that incorporating GO/NC into the WBDF reduced the filtrate volume by 17% under LTLP conditions and by 23.75% under HTHP conditions, indicating a significant improvement in filtration control. Furthermore, the GO/NC-WBDF increased the hydrophobicity of the shale, as shown by a 61° increase in the contact angle. These findings suggest that GO/NC enhances the performance of WBDF, particularly in unconventional shale formations, by reducing fluid loss and improving wellbore stability. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Graphical abstract

20 pages, 18781 KiB  
Article
Demonstration of Pattern Size Effects on Hydrophobic Nanocellulose Coatings with Regular Micron-Sized Island-like Geometrical Domains Created by Femtosecond Laser Micromachining
by Pieter Samyn, Patrick Cosemans and Olivier Malek
Micromachines 2025, 16(3), 289; https://doi.org/10.3390/mi16030289 - 28 Feb 2025
Viewed by 726
Abstract
As inspired by nature, wettability of bio-based material surfaces can be controlled by combining appropriate surface chemistries and topographies mimicking the structure of plant leaves or animals. The need for bio-based nanocellulose coatings with enhanced hydrophobic properties becomes technically relevant for extending their [...] Read more.
As inspired by nature, wettability of bio-based material surfaces can be controlled by combining appropriate surface chemistries and topographies mimicking the structure of plant leaves or animals. The need for bio-based nanocellulose coatings with enhanced hydrophobic properties becomes technically relevant for extending their applications in the technological domain with better protection and lifetime of the coatings. In this work, the water repellence of spray-coated nanocellulose coatings with hydrophobically modified cellulose microfiber (mCMF coatings), or hydrophobically modified cellulose nanofiber (mCNF coatings) was enhanced after femtosecond laser patterning. In particular, the influences of different island-like pattern geometries and pattern sizes were systematically studied. The island-like patterns were experimentally created with single posts that have variable sizes of the valleys (B = 30 to 15 µm) and top surface area (T = 120 to 15 µm), resulting in good resolution of the patterns down to the size of the laser beam diameter (15 µm). Depending on the intrinsic homogeneity and porosity of sprayed mCMF and mCNF coatings, the quality and resolution of the island-like patterns is better for the mCNF coatings with thinner and more homogeneous sizes of the cellulose nanofibrils. The increase in apparent water contact angle on patterned nanocellulose coatings can be estimated from the theoretical Cassie–Baxter state of wetting and shows maximum values up to θs = 128° (mCMF coatings), or θs = 140° (mCNF coatings), for the smallest pattern sizes in parallel with minimum contact angle hysteresis of Δθ = 14° (mCMF coatings), or Δθ < 9° (mCNF coatings). The study demonstrated that femtosecond laser patterning technology provides high flexibility and adaptivity to create surface patterns in appropriate dimensions with enhanced hydrophobicity of nanocellulose coatings. Full article
(This article belongs to the Special Issue Laser Micro/Nano-Fabrication)
Show Figures

Figure 1

29 pages, 13888 KiB  
Article
The Examination of the Effect of Water-Soluble Hydrophobic Agents on Physical–Mechanical Parameters and Resistance to Aggressive Environment of Concrete
by Jakub Hodul, Tatiana Beníková, Rostislav Drochytka and Ruben Paul Borg
Coatings 2025, 15(2), 175; https://doi.org/10.3390/coatings15020175 - 4 Feb 2025
Viewed by 1448
Abstract
The aim of this research was to examine the effect of water-based hydrophobic impregnations on concrete in order to improve its durability, chemical resistance, and physical–mechanical parameters. The purpose of this research was to prevent as much water evaporation as possible during concrete [...] Read more.
The aim of this research was to examine the effect of water-based hydrophobic impregnations on concrete in order to improve its durability, chemical resistance, and physical–mechanical parameters. The purpose of this research was to prevent as much water evaporation as possible during concrete hydration, which resulted in the improvement in concrete properties including strength, durability, resistance of concrete in high-pressure water, water tightness, etc. Water-based hydrophobic impregnations based on silane and siloxane, epoxy resin, and oil were chosen to achieve improvements in concrete parameters. The comparison of water-based hydrophobic impregnations with solvent-based hydrophobic impregnations was also performed using the determination of absorbency, water pressure penetration depth, watertightness, concrete penetration depth, and resistance to aggressive environment. The concrete microstructure was observed using a digital microscope and a scanning electron microscope (SEM). Samples with hydrophobic agents exhibited a higher contact angle, lower absorbency, and higher resistance to aggressive environment, when compared to the untreated surfaces, confirming the water repellency of the water-soluble hydrophobic impregnations. The positive effect of hydrophobic agents in the compressive strength was also recorded. Furthermore, the benefit of the addition of 0.1 wt.% of nanocellulose into the hydrophobic impregnations was observed. Based on the obtained results, it was found that the addition of nanocellulose to water-soluble hydrophobic impregnations reduced the depth of pressurized water seepage and increased the compressive strength of the concrete after 28 days by 2 MPa. Full article
Show Figures

Figure 1

24 pages, 5668 KiB  
Article
A New Multi-Active Heterogeneous Biocatalyst Prepared Through a Layer-by-Layer Co-Immobilization Strategy of Lipase and Laccase on Nanocellulose-Based Materials
by Kimberle Paiva dos Santos, Maíra Saldanha Duarte, Nathália Saraiva Rios, Ana Iraidy Santa Brígida and Luciana Rocha Barros Gonçalves
Catalysts 2025, 15(2), 99; https://doi.org/10.3390/catal15020099 - 21 Jan 2025
Cited by 1 | Viewed by 947
Abstract
Lipase from Pseudomonas fluorescens (PFL) and laccase from Trametes versicolor were co-immobilized onto nanocellulose (NC), using a layer-by-layer approach. Initially, PFL was adsorbed onto NC through ionic and hydrophobic interactions. To achieve higher PFL immobilization yield and activity, NC was functionalized with aldehyde [...] Read more.
Lipase from Pseudomonas fluorescens (PFL) and laccase from Trametes versicolor were co-immobilized onto nanocellulose (NC), using a layer-by-layer approach. Initially, PFL was adsorbed onto NC through ionic and hydrophobic interactions. To achieve higher PFL immobilization yield and activity, NC was functionalized with aldehyde groups through periodate oxidation (NCox) or glutaraldehyde activation (NC-GA). FTIR analysis confirmed these chemical modifications. Among the functionalized NCs, NCox showed the best capacity to retain higher amounts of PFL (maximum load: 20 mg/g), and this support was selected to proceed with the co-immobilization experiments. In this process, NCox-250-PFL (NCox activated with 250 µmol/g of aldehyde groups) was covered with polyethyleneimine (PEI), laccase was co-immobilized, and a crosslinking step using glutaraldehyde was used to covalently attach the enzymes to the support, producing the biocatalyst NCox-250-PFL-PEI-Lac-GA. Co-immobilized enzymes presented higher thermal stability (50 °C) than soluble enzymes; co-immobilized laccase retained 61.1% of its activity after 24 h, and PFL retained about 90% after 48 h of deactivation at 50 °C. In operational stability assays, the heterogeneous biocatalysts maintained more than 45% of their activity after five cycles of pNPB hydrolysis and ABTS oxidation. This co-immobilized biocatalyst, with its high stability and activity retention, is a promising multi-active heterogeneous biocatalyst for use in cascade reactions of industrial interest. Full article
(This article belongs to the Special Issue Immobilized Biocatalysts, 3rd Edition)
Show Figures

Figure 1

12 pages, 9479 KiB  
Article
An Efficient and Economic Approach for Producing Nanocellulose-Based Aerogel from Kapok Fiber
by Minjie Hou, Qi Wang, Shunyu Wang, Zeze Yang, Xuefeng Deng and Hailong Zhao
Gels 2024, 10(8), 490; https://doi.org/10.3390/gels10080490 - 25 Jul 2024
Cited by 3 | Viewed by 1663
Abstract
Cellulose nanofibers (NF) were extracted from kapok fibers using TEMPO oxidation, followed by a combination of mechanical grinding and ultrasonic processing. The TEMPO-mediated oxidation significantly impacted the mechanical disintegration behavior of the kapok fibers, resulting in a high NF yield of 98%. This [...] Read more.
Cellulose nanofibers (NF) were extracted from kapok fibers using TEMPO oxidation, followed by a combination of mechanical grinding and ultrasonic processing. The TEMPO-mediated oxidation significantly impacted the mechanical disintegration behavior of the kapok fibers, resulting in a high NF yield of 98%. This strategy not only improved the fibrillation efficiency but also reduced overall energy consumption during NF preparation. An ultralight and highly porous NF-based aerogel was successfully prepared using a simple ice-templating technique. It had a low density in the range of 3.5–11.2 mg cm−3, high compressional strength (160 kPa), and excellent thermal insulation performance (0.024 W m−1 K−1). After silane modification, the aerogel displayed an ultralow density of 7.9 mg cm−3, good hydrophobicity with a water contact angle of 128°, and excellent mechanical compressibility with a high recovery of 92% at 50% strain. Benefiting from the silene support structure, it showed a high oil absorptive capacity (up to 71.4 g/g for vacuum pump oil) and a remarkable oil recovery efficiency of 93% after being reused for 10 cycles. These results demonstrate that our strategy endows nanocellulose-based aerogels with rapid shape recovery and high liquid absorption capabilities. Full article
(This article belongs to the Special Issue Preparation and Characteristics of Aerogel-Based Materials)
Show Figures

Figure 1

23 pages, 10762 KiB  
Article
Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings
by Pieter Samyn and Patrick Cosemans
Polymers 2024, 16(8), 1095; https://doi.org/10.3390/polym16081095 - 14 Apr 2024
Cited by 5 | Viewed by 2366
Abstract
While adding different micro- and nanocellulose types into epoxy coating formulations with waterborne phenalkamine crosslinker, effects on processing conditions and coating performance were systematically investigated. The variations in viscosity, thermal and thermomechanical properties, mechanical behavior, abrasive wear, water contact angles, and coating morphologies [...] Read more.
While adding different micro- and nanocellulose types into epoxy coating formulations with waterborne phenalkamine crosslinker, effects on processing conditions and coating performance were systematically investigated. The variations in viscosity, thermal and thermomechanical properties, mechanical behavior, abrasive wear, water contact angles, and coating morphologies were evaluated. The selected additives include microcrystalline cellulose (MCC) at 1 to 10 wt.% and cellulose nanocrystals (CNC), cellulose nanofibers (CNF), cellulose microfibers (CMF), and hydrophobically modified cellulose microfibers (mCMF) at 0.1 to 1.5 wt.%. The viscosity profiles are determined by the inherent additive characteristics with strong shear thinning effects for epoxy/CNF, while the epoxy/mCMF provides lower viscosity and better matrix compatibility owing to the lubrication of encapsulated wax. The crosslinking of epoxy/CNF is favored and postponed for epoxy/(CNC, CMF, mCMF), as the stronger interactions between epoxy and CNF are confirmed by an increase in the glass transition temperature and reduction in the dampening factor. The mechanical properties indicate the highest hardness and impact strength for epoxy/CNF resulting in the lowest abrasion wear rates, but ductility enhances and wear rates mostly reduce for epoxy/mCMF together with hydrophobic protection. In addition, the mechanical reinforcement owing to the specific organization of a nanocellulose network at percolation threshold concentrations of 0.75 wt.% is confirmed by microscopic analysis: the latter results in a 2.6 °C (CNF) or 1.6 °C (CNC) increase in the glass transition temperature, 50% (CNF) or 20% (CNC) increase in the E modulus, 37% (CNF) or 32% (CNC) increase in hardness, and 58% (CNF) or 33% (CNC) lower abrasive wear compared to neat epoxy, while higher concentrations up to 1.5 wt.% mCMF can be added. This research significantly demonstrates that nanocellulose is directly compatible with a waterborne phenalkamine crosslinker and actively contributes to the crosslinking of waterborne epoxy coatings, changing the intrinsic glass transition temperatures and hardness properties, to which mechanical coating performance directly relates. Full article
Show Figures

Figure 1

36 pages, 13082 KiB  
Article
Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota
by Angela Moraru, Ștefan-Ovidiu Dima, Naomi Tritean, Elena-Iulia Oprița, Ana-Maria Prelipcean, Bogdan Trică, Anca Oancea, Ionuț Moraru, Diana Constantinescu-Aruxandei and Florin Oancea
Pharmaceuticals 2023, 16(12), 1671; https://doi.org/10.3390/ph16121671 - 30 Nov 2023
Cited by 8 | Viewed by 2999
Abstract
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica [...] Read more.
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18–22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Based Nanostructured Systems)
Show Figures

Graphical abstract

19 pages, 5651 KiB  
Article
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals
by Petr Sitnikov, Philipp Legki, Mikhail Torlopov, Yulia Druz, Vasily Mikhaylov, Dmitriy Tarabukin, Irina Vaseneva, Maria Markarova, Nikita Ushakov and Elena Udoratina
Polysaccharides 2023, 4(4), 402-420; https://doi.org/10.3390/polysaccharides4040024 - 10 Nov 2023
Cited by 2 | Viewed by 1934
Abstract
This study has investigated the influence of cellulose nanocrystals (CNCs) with partially acetylated surfaces on the formation, stability, rheology and biodegradability of the Pickering emulsion in a crude oil/water (co/w) system. In all investigated systems, it was observed that the CNC concentrations of [...] Read more.
This study has investigated the influence of cellulose nanocrystals (CNCs) with partially acetylated surfaces on the formation, stability, rheology and biodegradability of the Pickering emulsion in a crude oil/water (co/w) system. In all investigated systems, it was observed that the CNC concentrations of 7 mg/mL led to the emulsions showing stability over time. It was also noticed that the increase in concentration of background electrolyte (NaCl) leds to the droplets of emulsions becoming smaller. It was demonstrated that the rheology of the o/w emulsions of the oil products and crude oil stabilized by CNCs depends, to a large extent, on the colloid chemical properties of nanocellulose particles. Calculations and experimental methods were used to study the changes in the acid–base properties of CNCs on the surface of emulsion droplets, depending on a type of hydrophobic components (crude oil and liquid paraffin). The formation of Pickering emulsions leads to the oxidation of oil by Rhodococcus egvi in aerobic conditions becoming more effective, provided that the environment includes mineral salts of nitrogen, potassium and phosphorus. The results obtained present a scientific basis for the development of technologies for the disposal of oil spills on water surfaces. Full article
Show Figures

Figure 1

17 pages, 6741 KiB  
Article
Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose
by Weronika Janik, Michał Nowotarski, Kerstin Ledniowska, Natalia Biernat, Abdullah, Divine Yufetar Shyntum, Katarzyna Krukiewicz, Roman Turczyn, Klaudiusz Gołombek and Gabriela Dudek
Int. J. Mol. Sci. 2023, 24(17), 13205; https://doi.org/10.3390/ijms241713205 - 25 Aug 2023
Cited by 9 | Viewed by 1876
Abstract
The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through [...] Read more.
The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through the use of: (1) nanocellulose as an additive to reduce their hydrophilic nature; (2) bio-based plasticizer to improve their mechanical properties; and (3) chestnut extract as an antimicrobial agent. To evaluate their stability over time, the properties of as-formed films (mechanical, hydrophilic, barrier and antibacterial) were studied immediately after preparation and after 7, 14 and 30 days. In addition, the morphological properties of the films were characterized by scanning electron microscopy, their structure by FTIR, their transparency by UV-Vis and their thermal properties by TGA. The films showed a hydrophobic character (contact angle above 100°), barrier properties to oxygen and carbon dioxide and strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Moreover, the use of nanofillers did not deteriorate the elongation at breaks or the thermal properties of the films, but their addition reduced the transparency. In addition, the results showed that the greatest change in film properties occurred within the first 7 days after sample preparation, after which the properties were found to stabilize. Full article
Show Figures

Graphical abstract

14 pages, 3082 KiB  
Article
Stabilization of Beeswax-In-Water Dispersions Using Anionic Cellulose Nanofibers and Their Application in Paper Coating
by Genís Bayés, Roberto J. Aguado, Quim Tarrés, Jaume Planella and Marc Delgado-Aguilar
Nanomaterials 2023, 13(16), 2353; https://doi.org/10.3390/nano13162353 - 16 Aug 2023
Cited by 5 | Viewed by 4399
Abstract
Beeswax is a bio-sourced, renewable, and even edible material that stands as a convincing option to provide paper-based food packaging with moisture resistance. Nonetheless, the difficulty of dispersing it in water limits its applicability. This work uses oxidized, negatively charged cellulose nanofibers along [...] Read more.
Beeswax is a bio-sourced, renewable, and even edible material that stands as a convincing option to provide paper-based food packaging with moisture resistance. Nonetheless, the difficulty of dispersing it in water limits its applicability. This work uses oxidized, negatively charged cellulose nanofibers along with glycerol to stabilize beeswax-in-water emulsions above the melting point of the wax. The synergistic effects of nanocellulose and glycerol granted the stability of the dispersion even when it cooled down, but only if the concentration of nanofibers was high enough. This required concentration (0.6–0.9 wt%) depended on the degree of oxidation of the cellulose nanofibers. Rheological hindrance was essential to prevent the buoyancy of beeswax particles, while the presence of glycerol prevented excessive aggregation. The mixtures had yield stress and showed pseudoplastic behavior at a high enough shear rate, with their apparent viscosity being positively influenced by the surface charge density of the nanofibers. When applied to packaging paper, the nanocellulose-stabilized beeswax suspensions not only enhanced its barrier properties towards liquid water (reaching a contact angle of 96°) and water vapor (<100 g m−2 d−1), but also to grease (Kit rating: 5) and airflow (>1400 Gurley s). While falling short of polyethylene-coated paper, this overall improvement, attained using only one layer of a biobased coating suspension, should be understood as a step towards replacing synthetic waxes and plastic laminates. Full article
Show Figures

Graphical abstract

24 pages, 4015 KiB  
Review
Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review
by Yueqi Wu, Xue Wang, Lihong Yao, Siyu Chang and Ximing Wang
Molecules 2023, 28(15), 5836; https://doi.org/10.3390/molecules28155836 - 3 Aug 2023
Cited by 21 | Viewed by 5414
Abstract
Energy problems have become increasingly prominent. The use of thermal insulation materials is an effective measure to save energy. As an efficient energy-saving material, nanocellulose aerogels have broad application prospects. However, nanocellulose aerogels have problems such as poor mechanical properties, high flammability, and [...] Read more.
Energy problems have become increasingly prominent. The use of thermal insulation materials is an effective measure to save energy. As an efficient energy-saving material, nanocellulose aerogels have broad application prospects. However, nanocellulose aerogels have problems such as poor mechanical properties, high flammability, and they easily absorbs water from the environment. These defects restrict their thermal insulation performance and severely limit their application. This review analyzes the thermal insulation mechanism of nanocellulose aerogels and summarizes the methods of preparing them from biomass raw materials. In addition, aiming at the inherent defects of nanocellulose aerogels, this review focuses on the methods used to improve their mechanical properties, flame retardancy, and hydrophobicity in order to prepare high-performance thermal insulation materials in line with the concept of sustainable development, thereby promoting energy conservation, rational use, and expanding the application of nanocellulose aerogels. Full article
Show Figures

Figure 1

32 pages, 4786 KiB  
Review
Nanocellulose-Based Passivated-Carbon Quantum Dots (P-CQDs) for Antimicrobial Applications: A Practical Review
by Sherif S. Hindi, Jamal S. M. Sabir, Uthman M. Dawoud, Iqbal M. Ismail, Khalid A. Asiry, Zohair M. Mirdad, Kamal A. Abo-Elyousr, Mohamed H. Shiboob, Mohamed A. Gabal, Mona Othman I. Albureikan, Rakan A. Alanazi and Omer H. M. Ibrahim
Polymers 2023, 15(12), 2660; https://doi.org/10.3390/polym15122660 - 12 Jun 2023
Cited by 11 | Viewed by 3801
Abstract
Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, [...] Read more.
Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2′-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions. Full article
(This article belongs to the Special Issue Cellulose and Its Derivatives: Applications, and Future Perspectives)
Show Figures

Figure 1

Back to TopTop