Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review
Abstract
:1. Introduction
2. Thermal Insulation Mechanism of Nanocellulose Aerogels
2.1. Insulation Mechanism
2.2. Nanocellulose-Based Thermal Insulative Aerogels
3. Preparation of Nanocellulose Aerogels
3.1. Cellulose Purification Method
3.2. Preparation of Nanocellulose Suspension
3.3. Drying Method
4. Mechanical Property Improvement of Nanocellulose Aerogels
4.1. Regulation of Morphology and Structure
4.1.1. Changing the Suspension Concentration
4.1.2. Regulation of Freeze Drying Parameters
4.2. Chemical Crosslinking
4.3. Introduction of Enhanced Components
4.4. Summary
5. Flame Retardancy Modification of Nanocellulose Aerogels
5.1. Inorganic Flame Retardants
5.2. Organic Flame Retardants
5.3. Organic/Inorganic Composite Flame Retardants
5.4. Summary
6. Hydrophobicity Modification of Nanocellulose Aerogels
7. Conclusions and Outlook
- (I)
- The heat transfer mechanism of nanocellulose aerogels includes gas conduction, solid conduction, and radiation. The thermal insulation performance of nanocellulose aerogels is influenced by the size effect, interface effect, and pore size distribution. The thermal insulation performance of nanocellulose aerogels can be improved as follows: (i) reducing the pore size below the mean free path of air; (ii) increasing the uniformity of pore size distribution; (iii) lessening the characteristic size of the solid phase framework; (iv) choosing the appropriate density; and (v) building a multi-level ordered microstructure. In considering the coupling effect, the increase in porosity decreases the coupled thermal conductivity, according to the formula. Theoretically, increasing the porosity while controlling the pore size can improve the thermal insulation performance of nanocellulose aerogels. However, there is still a lack of research on the porosity and thermal insulation performance of nanocellulose aerogels.
- (II)
- The yield of cellulose purified by chemical methods is high, making it suitable for large-scale processing. Using high-intensity ultrasonication to fibrillate purified cellulose is easy to operate and can obtain nanocellulose with a high aspect ratio. Freeze drying maintains the skeleton integrity, prevents the internal network structure from collapsing, and is easy to implement. Therefore, the ideal method to prepare nanocellulose aerogels from biomass materials is as follows: (i) removing the lignin and hemicellulose by chemical methods to obtain purified cellulose; (ii) preparation of nanocellulose suspension using high-intensity ultrasonication to fibrillate the purified cellulose; and (iii) freeze dry the suspension to obtain the nanocellulose aerogel.
- (III)
- Increasing the concentration of the nanocellulose suspension results in forming more two-dimensional sheet structures in the aerogel, stabilizing its initial shape under the action of external force. During the freezing casting, the growth rate of ice crystals increases with the decrease in temperature, resulting in the formation of small pore sizes. Additionally, directional freezing causes ice crystals to grow along the freezing gradient direction, forming an ordered structure inside the aerogel and enhancing its structural stability. Chemical crosslinking forms irreversible covalent bonds between nanocellulose molecules, enhancing their resistance to sliding during deformation. The introduction of enhanced components can improve the strength of the skeleton, leading to an increase in its compressive strength. However, increasing the suspension concentration will increase the density of the nanocellulose aerogel and affect its thermal insulation performance. Introducing enhanced components increases the aerogel density, negatively affects the flexibility, and causes interface bonding problems. It is challenging to meet practical application requirements only by adjusting the freeze drying parameters. Chemical crosslinking is an effective method for improving the compression resilience of nanocellulose aerogels. For instance, the shape recovery rate could reach 93% under 50% compression strain.
- (IV)
- The flame retardants for nanocellulose aerogel include inorganic, organic, and composite flame retardants. Inorganic flame retardants are green and cheap but often need a large addition to achieve an excellent flame retardant effect (e.g., adding 10.95 wt% molybdenum disulfide to an aerogel achieved good flame retardancy). Organic flame retardants have good compatibility with nanocellulose aerogels and require a low addition (e.g., adding 1.0 wt% melamine and phytic acid bestowed a nanocellulose aerogel with good flame retardancy), but they produce toxic gas during combustion. Composite flame retardants combine the advantages of inorganic and organic flame retardants. However, they have some problems, such as poor compatibility and complex preparation processes. Developing flame retardants with efficient flame retardancy, good compatibility, and environmentally friendliness is urgently needed. Modifying flame retardants by the use of surfactants, microencapsulation, grafting reactions, plasma/UV treatment, and other methods can enhance their flame retardant efficiency, compatibility with substrates, and durability.
- (V)
- The existing hydrophobic modification processes for nanocellulose aerogels are usually complex and energy intensive. As the most widely used strategy, CVD has the disadvantage of uneven hydrophobic modification. Due to the fragile skeleton structure of nanocellulose aerogels, the dip coating technique may cause pore collapse during drying. Silane modification can achieve hydrophobic uniformity of nanocellulose aerogels and improve their porosity and mechanical properties, but it is difficult to accomplish in large-scale applications. High-temperature carbonization has high energy consumption and a complicated manufacturing process, and if the carbonization temperature is too high, the nanocellulose aerogel will be crushed. The following should be considered in future work: (i) introducing soft elastic materials with good compatibility to mitigate the negative impact of external energy on the structure and stability of nanocellulose aerogels through elastic deformation; (ii) adding nano self-healing materials to refine the durability and mechanical properties of hydrophobic nanocellulose aerogels; and (iii) developing green, non-toxic, and recyclable modifiers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Sen, S.; Singh, A.; Bera, C.; Roy, S.; Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: A review. Cellulose 2022, 29, 4805–4833. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef]
- Sun, H.; Bi, H.; Lin, X.; Cai, L.; Xu, M. Lightweight, Anisotropic, Compressible, and Thermally-Insulating Wood Aerogels with Aligned Cellulose Fibers. Polymers 2020, 12, 165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cheng, Y.; Tebyetekerwa, M.; Meng, S.; Zhu, M.; Lu, Y. “Stiff–Soft” Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance. Adv. Funct. Mater. 2019, 29, 1806407. [Google Scholar] [CrossRef]
- Song, M.; Jiang, J.; Qin, H.; Ren, X.; Jiang, F. Flexible and Super Thermal-insulating Cellulose Nanofibrils/emulsion Composite Aerogel with Quasi-Closed Pores. ACS Appl. Mater. Interfaces 2020, 12, 45363–45372. [Google Scholar] [CrossRef]
- Wang, D.; Peng, H.; Yu, B.; Zhou, K.; Pan, H.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem. Eng. J. 2020, 389, 124449. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Paliwal, P.; Subhedar, A.; Kargarzadeh, H. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano 2021, 15, 3849–3874. [Google Scholar] [CrossRef]
- Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström, L. Thermally Insulating Nanocellulose-Based Materials. Adv. Mater. 2020, 33, 2001839. [Google Scholar] [CrossRef]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mat. 2017, 29, 4609–4631. [Google Scholar] [CrossRef] [Green Version]
- Ghahari, S.; Assi, L.N.; Alsalman, A.; Alyamaç, K.E. Fracture Properties Evaluation of Cellulose Nanocrystals Cement Paste. Materials 2020, 13, 2507. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wu, K.; Hu, Y.; Zhuo, H.; Chen, Z.; Jing, S.; Liu, Q.; Liu, C.; Zhong, L. A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. J. Mater. Chem. 2018, 6, 23550–23559. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, J.; Yang, W.; Gong, W.; Li, Y.; Zhang, Q.; Li, K.; Hou, C.; Wang, H. Superflexible hybrid aerogel-based fabrics enable broadband electromagnetic wave management. Chem. Eng. J. 2023, 462, 142169. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Wu, Z.; Liu, X.-Y.; Li, Q.; Zhu, W.; Jiang, Y.; Hu, L. Enhanced Mechanical Stability and Hydrophobicity of Cellulose Aerogels via Quantitative Doping of Nano-Lignin. Polymers 2023, 15, 1316. [Google Scholar] [CrossRef]
- Iskandar, M.; Yahya, E.B.; Abdul Khalil, H.P.S.; Rahman, A.A.; Ismail, M.A. Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application. Polymers 2022, 14, 849. [Google Scholar] [CrossRef]
- Tang, G.; Bi, C.; Zhao, Y.; Tao, W. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 2015, 90, 701–721. [Google Scholar] [CrossRef]
- Geng, C.; Zhao, Z.; Xue, Z.; Xu, P.; Xia, Y. Preparation of Ion-Exchanged TEMPO-Oxidized Celluloses as Flame Retardant Products. Molecules 2019, 24, 1947. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Hao, J.; Liao, R.; Chen, X.; Cheng, L.; Liu, M. Comparative Study on the Thermal-Aging Characteristics of Cellulose Insulation Polymer Immersed in New Three-Element Mixed Oil and Mineral Oil. Polymers 2019, 11, 1292. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. 2018, 57, 7580–7608. [Google Scholar] [CrossRef]
- Obori, M.; Suh, D.; Yamasaki, S.; Kodama, T.; Saito, T.; Isogai, A.; Shiomi, J. Parametric Model to Analyze the Components of the Thermal Conductivity of a Cellulose-Nanofibril Aerogel. Phys. Rev. Appl. 2019, 11, 024044. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.F.; Tang, G. A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels. Int. J. Heat Mass Transfer 2019, 137, 64–73. [Google Scholar] [CrossRef]
- Berge, A.; Johansson, P. Literature Review of High Performance Thermal Insulation; Chalmers University of Technology: Gothenburg, Sweden, 2012; pp. 3–4. [Google Scholar]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- He, Y.-L.; Xie, T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin. Sci. Bull. 2015, 60, 137–163. [Google Scholar]
- Bi, C.; Tang, G. Effective thermal conductivity of the solid backbone of aerogel. Int. J. Heat Mass Transfer 2013, 64, 452–456. [Google Scholar] [CrossRef]
- Qin, G.Q.; Jiang, S.; Zhang, H.; Qin, S.; Wu, H.; Zhang, F.; Zhang, G. Ambient-Dried, Ultra-high Strength, Low Thermal Conductivity, High Char Residual Rate F-type Polybenzoxazine Aerogel. ACS Omega 2022, 7, 26116–26122. [Google Scholar] [CrossRef]
- Leong, K.C.; Li, H. Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model. Int. J. Heat Mass Transfer 2011, 54, 5491–5496. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Zhang, X.-X.; Du, X. Radiative heat transfer study on silica aerogel and its composite insulation materials. J. Non-Cryst. Solids 2013, 362, 231–236. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.; Hu, Z.J.; Yang, H.L.; Li, J. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int. J. Heat Mass Transfer 2014, 79, 126–136. [Google Scholar] [CrossRef]
- Peng, Q.; Lu, Y.L.; Li, Z.; Zhang, J.; Zong, L. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation. Carbohydr. Polym. 2022, 297, 119990. [Google Scholar] [CrossRef]
- Klemm, D.O.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.G.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Tseng, Y.-S.; Kumar, V.; Chen, C.-W.; Haldar, D.; Saini, J.K.; Dong, C.-D. Developments in bioprocess for bacterial cellulose production. Bioresour. Technol. 2022, 344, 126343. [Google Scholar] [CrossRef]
- Apostolopoulou-Kalkavoura, V.; Munier, P.; Dlugozima, L.; Heuthe, V.-L.; Bergström, L. Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams. Sci. Rep. 2021, 11, 18685. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Saelices, C.; Seantier, B.; Grohens, Y.; Capron, I. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions. ACS Appl. Mater. Interfaces 2018, 10, 16193–16202. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 2017, 157, 105–113. [Google Scholar] [CrossRef]
- Zhou, S.; Apostolopoulou-Kalkavoura, V.; Tavares da Costa, M.V.; Bergström, L.; Strømme, M.; Xu, C. Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy. Nano-Micro Lett. 2019, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Saito, T.; Isogai, A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. 2014, 53, 10394–10397. [Google Scholar] [CrossRef]
- Karadagli, I.; Schulz, B.; Schestakow, M.; Milow, B.; Gries, T.; Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 2015, 106, 105–114. [Google Scholar] [CrossRef]
- Ahmadi Heidari, N.; Fathi, M.; Hamdami, N.; Taheri, H.; Siqueira, G.D.F.; Nyström, G. Thermally Insulating Cellulose Nanofiber Aerogels from Brewery Residues. ACS Sustain. Chem. Eng. 2023, 11, 10698–10708. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Wang, X.; Liu, S.; Yao, Y. Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater. Lett. 2018, 229, 103–106. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Y.; Wang, X.; Wu, Y.; Han, M.; You, J.; Jia, C.; Kim, J. Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: Preparation and comparative study. Cellulose 2022, 29, 817–833. [Google Scholar] [CrossRef]
- Yang, X.-F.; Wang, Z. Effect of Particle Size and Concentration of Nanocellulose on Thermal Properties of Nanocellulose Aerogel. J. Phys. Conf. Ser. 2023, 2437, 012061. [Google Scholar] [CrossRef]
- Seantier, B.; Bendahou, D.; Bendahou, A.; Grohens, Y.; Kaddami, H. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 2016, 138, 335–348. [Google Scholar] [CrossRef]
- Cui, P.; Ye, Z.; Chai, M.-Z.; Yuan, J.; Xiong, Y.; Yang, H.; Yao, L. Effective fractionation of lignocellulose components and lignin valorization by combination of deep eutectic solvent with ethanol. Front. Bioeng. Biotechnol. 2023, 10, 1115469. [Google Scholar] [CrossRef]
- Korányi, T.I.; Fridrich, B.; Pineda, A.; Barta, K. Development of ‘Lignin-First’ Approaches for the Valorization of Lignocellulosic Biomass. Molecules 2020, 25, 2815. [Google Scholar] [CrossRef] [PubMed]
- Iiyama, K.; Lam, T.; Stone, B. Covalent Cross-Links in the Cell Wall. Plant Physiol. 1994, 104, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.S.; Lim, L.T.; Manickavasagan, A. Ultrasound-assisted alkali-urea pre-treatment of Miscanthus × giganteus for enhanced extraction of cellulose fiber. Carbohydr. Polym. 2020, 247, 116758. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jiang, W.; Zhang, Y.; Ben, H.; Han, G.; Ragauskas, A.J. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose 2018, 25, 4979–4992. [Google Scholar] [CrossRef]
- Yi, T.; Zhao, H.; Mo, Q.; Pan, D.; Liu, Y.; Huang, L.; Xu, H.; Hu, B.; Song, H. From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials 2020, 13, 5062. [Google Scholar] [CrossRef]
- Dimić-Mišić, K.; Maloney, T.; Liu, G.; Gane, P. Micro nanofibrillated cellulose (MNFC) gel dewatering induced at ultralow-shear in presence of added colloidally-unstable particles. Cellulose 2017, 24, 1463–1481. [Google Scholar] [CrossRef]
- Rantanen, J.; Dimić-Mišić, K.; Kuusisto, J.; Maloney, T. The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering. Cellulose 2015, 22, 4003–4015. [Google Scholar] [CrossRef]
- Melesse, G.T.; Hone, F.G.; Mekonnen, M.A. Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization. Adv. Mater. Sci. Eng. 2022, 2022, 1712207. [Google Scholar] [CrossRef]
- Yadav, C.; Saini, A.; Maji, P.K. Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr. Polym. 2017, 165, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Cao, Q.; Liang, Y.; Hong, S.; Xia, C.; Wu, Y.; Li, J.; Cai, L.; Sonne, C.; Le, Q.V.; et al. High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem. Eng. J. 2020, 401, 126150. [Google Scholar] [CrossRef]
- He, H.; An, F.; Wang, Y.-W.; Wu, W.; Huang, Z.; Song, H. Effects of pretreatment, NaOH concentration, and extraction temperature on the cellulose from Lophatherum gracile Brongn. Int. J. Biol. Macromol. 2021, 190, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.; Kaplan, D.L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018, 85, 1–56. [Google Scholar] [CrossRef]
- Ferrer, A.; Filpponen, I.; Rodríguez, A.; Laine, J.; Rojas, O.J. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour. Technol. 2012, 125, 249–255. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764. [Google Scholar] [CrossRef]
- Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019, 1, 937–947. [Google Scholar] [CrossRef]
- Uranchimeg, K.; Jargalsaikhan, B.; Bor, A.; Yoon, K.; Choi, H. Comparative Study of the Morphology of Cellulose Nanofiber Fabricated Using Two Kinds of Grinding Method. Materials 2022, 15, 7048. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.-l.; Hai, Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Novo, L.P.; Bras, J.; García, A.; Belgacem, N.; Curvelo, A.A.S. A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind. Crop. Prod. 2016, 93, 88–95. [Google Scholar] [CrossRef]
- Jasmani, L.; Rusli, R.; Khadiran, T.; Jalil, R.; Adnan, S. Application of Nanotechnology in Wood-Based Products Industry: A Review. Nanoscale Res. Lett. 2020, 15, 207. [Google Scholar] [CrossRef]
- Ho, T.T.T.; Abe, K.; Zimmermann, T.; Yano, H. Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 2015, 22, 421–433. [Google Scholar] [CrossRef]
- Baati, R.; Mabrouk, A.B.; Magnin, A.; Boufi, S. CNFs from twin screw extrusion and high pressure homogenization: A comparative study. Carbohydr. Polym. 2018, 195, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Sakuma, W.; Yasui, H.; Daicho, K.; Saito, T.; Fujisawa, S.; Isogai, A.; Kanamori, K. Nanocellulose Xerogels With High Porosities and Large Specific Surface Areas. Front. Chem. 2019, 7, 316. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Grishkewich, N.; Liu, L.; Wang, C.; Tam, K.M.C.; Liu, S.; Mao, Z.; Sui, X. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem. Eng. J. 2019, 366, 531–538. [Google Scholar] [CrossRef]
- Ebrahimi, A.A.; Dahrazma, B.; Adelifard, M. Facile and novel ambient pressure drying approach to synthesis and physical characterization of cellulose-based aerogels. J. Porous Mat. 2020, 27, 1219–1232. [Google Scholar] [CrossRef]
- Darpentigny, C.M.; Nonglaton, G.; Bras, J.; Jean, B. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Carbohydr. Polym. 2020, 229, 115560. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Jiang, H.; Song, Y.; Zhou, Z.; Zhao, H. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 2016, 183, 179–182. [Google Scholar] [CrossRef]
- Gong, C.; Ni, J.-P.; Tian, C.; Su, Z.-H. Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int. J. Biol. Macromol. 2021, 172, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels. J. Sol-Gel Sci. Technol. 2017, 84, 475–485. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Wang, Y.; Yi, X.; Zeng, J.; Yu, H.; Liu, Y.; Li, J. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 2014, 7, 154–161. [Google Scholar] [CrossRef]
- Martoïa, F.; Cochereau, T.; Dumont, P.J.J.; Orgéas, L.; Terrien, M.; Belgacem, M.N. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016, 104, 376–391. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Li, Q.; Liu, Y.; Li, J. Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 2011, 7, 10360–10368. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhao, J.; Xiao, M.; Zhang, W.; Lu, C. Mechanically Strong and Thermally Responsive Cellulose Nanofibers/Poly(N-isopropylacrylamide) Composite Aerogels. ACS Sustain. Chem. Eng. 2016, 4, 4321–4327. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, B.; Agrawal, A.K.; Maji, P.K. Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater. Des. 2018, 158, 224–236. [Google Scholar] [CrossRef]
- Mueller, S.; Sapkota, J.; Nicharat, A.; Zimmermann, T.; Tingaut, P.; Weder, C.; Foster, E.J.; Foster, E.J. Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J. Appl. Polym. Sci. 2015, 132, 41740. [Google Scholar] [CrossRef]
- Zhao, N.; Li, M.; Gong, H.; Bai, H. Controlling ice formation on gradient wettability surface for high-performance bioinspired materials. Sci. Adv. 2020, 6, eabb4712. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, L.; Chen, L.; Duan, G.; Mei, C.; Huang, C.; Han, J.; Jiang, S. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 2019, 26, 6653–6667. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A.P.; Ritchie, R.O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Xingyu, Z.; Tiantian, X.; Fan, Y.; Fan, W.; Liu, T.; Liu, T. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 2020, 385, 123963. [Google Scholar]
- Liu, Q.Y.; Liu, Y.Y.; Feng, Q.; Chen, C.; Xu, Z. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. J. Hazard. Mater. 2022, 441, 129965. [Google Scholar] [CrossRef]
- Ni, X.; Ke, F.; Xiao, M.; Wu, K.; Kuang, Y.; Corke, H.; Jiang, F. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int. J. Biol. Macromol. 2016, 92, 1130–1135. [Google Scholar] [CrossRef]
- Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Freezing as a Path to Build Complex Composites. Science 2006, 311, 515–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Xia, Y.; Xu, P.; Chen, B. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 2018, 25, 3533–3544. [Google Scholar] [CrossRef]
- Liang, L.; Huang, C.; Hao, N.; Ragauskas, A.J. Cross-linked poly(methyl vinyl ether-co-maleic acid)/poly(ethylene glycol)/nanocellulosics foams via directional freezing. Carbohydr. Polym. 2019, 213, 346–351. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Y.; Jiang, J.; Wang, L.; Song, M.; Bi, R.; Zhu, P.; Jiang, F. Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly. Adv. Funct. Mater. 2021, 31, 2106269. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, Y.; Xia, M.; Du, H.; Lin, Z.-h.; Li, B.; Liu, H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022, 14, 2648. [Google Scholar] [CrossRef]
- Syverud, K.; Pettersen, S.R.; Draget, K.I.; Chinga-Carrasco, G. Controlling the elastic modulus of cellulose nanofibril hydrogels—Scaffolds with potential in tissue engineering. Cellulose 2015, 22, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Youn, H.J.; Lee, H.L. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 2015, 22, 3715–3724. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. ACS Appl. Mater. Interfaces 2017, 9, 2825–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Fan, D.; Lyu, S.; Li, G.; Jiang, F.; Wang, S. Elasticity-Enhanced and Aligned Structure Nanocellulose Foam-like Aerogel Assembled with Cooperation of Chemical Art and Gradient Freezing. ACS Sustain. Chem. Eng. 2018, 7, 1381–1388. [Google Scholar] [CrossRef]
- Chen, C.H.; Yu, D.; Yuan, Q.; Wu, M. Anisotropic, elastic cellulose nanofibril cryogel cross-linked by waterborne polyurethane with excellent thermal insulation performance. Cellulose 2022, 29, 6219–6229. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, Y.; Yang, S.; Fan, D.; Li, G.; Wang, S. Combination of water-soluble chemical grafting and gradient freezing to fabricate elasticity-enhanced and anisotropic nanocellulose aerogels. Appl. Nanosci. 2019, 10, 411–419. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Wang, B.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Sui, X. Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose 2017, 25, 573–582. [Google Scholar] [CrossRef]
- Chen, C.H.; Li, C.; Yu, D.; Wu, M. A facile method to prepare superhydrophobic nanocellulose-based aerogel with high thermal insulation performance via a two-step impregnation process. Cellulose 2021, 29, 245–257. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Liao, T.; Gao, L.; Wang, M.; Xu, X.; Yang, X.; Liu, H. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties. Carbohydr. Polym. 2020, 241, 116425. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A. Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites. Materials 2021, 14, 3620. [Google Scholar] [CrossRef]
- Wang, Y.K.; Liu, J.; Pan, X.; Zhao, M.; Zhang, J. Rapid Preparation of Flame-Retardant Coatings Using Polyurethane Emulsion Mixed with Inorganic Fillers. Polymers 2023, 15, 754. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Park, J.-H.; Shim, S.-B.; Lee, J.E. Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants. Polymers 2022, 14, 3524. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kalali, E.N.; Wan, J.; Wang, D.y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46. [Google Scholar] [CrossRef]
- Luo, X.; Shen, J.; Ma, Y.; Liu, L.; Meng, R.; Yao, J. Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation. Carbohydr. Polym. 2020, 230, 115623. [Google Scholar] [CrossRef]
- Yang, L.; Mukhopadhyay, A.; Jiao, Y.; Yong, Q.; Chen, L.; Xing, Y.; Hamel, J.A.; Zhu, H. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 2017, 9, 11452–11462. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Verma, C.; Maji, P.K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. J. Supercrit. Fluids 2019, 152, 104537. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, T.; He, S.; Xiao, H.-x.; Dai, H.; Yuan, B.; Chen, X.; Yang, X. Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus. Appl. Surf. Sci. 2019, 497, 143775. [Google Scholar] [CrossRef]
- Wan, C.; Li, J. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 2016, 150, 172–179. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Z.; Lyu, S.; Fu, F.; Wang, S. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydr. Polym. 2018, 179, 333–340. [Google Scholar] [CrossRef]
- Ren, X.; Song, M.; Jiang, J.; Yu, Z.; Zhang, Y.; Zhu, Y.; Liu, X.B.; Li, C.; Oguzlu-Baldelli, H.; Jiang, F. Fire-Retardant and Thermal-Insulating Cellulose Nanofibril Aerogel Modified by In Situ Supramolecular Assembly of Melamine and Phytic Acid. Adv. Eng. Mater. 2022, 24, 2101534. [Google Scholar] [CrossRef]
- Yue, X.; Deng, W.; Zhou, Z.G.; Xu, Y.; He, J.; Wang, Z. Reinforced and Flame Retarded Cellulose Nanofibril/Sodium Alginate Compound Aerogel Fabricated via Boric Acid/Ca2+ Double Cross-Linking. J. Polym. Environ. 2022, 31, 1038–1050. [Google Scholar] [CrossRef]
- Köklükaya, O.; Carosio, F.; Wågberg, L. Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Appl. Mater. Interfaces 2017, 9, 29082–29092. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, F.; Li, H.X. Preparation and characterization of cellulose nanofiber/melamine–urea–formaldehyde composite aerogels for thermal insulation applications. Polym. Compos. 2022, 43, 7882–7892. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Xie, J.; Wang, Z.; Li, X.; He, Z.-Y. Effect of surfactant modified nano-composite flame retardant on the combustion and viscosity-temperature properties of asphalt binder and mixture. Powder Technol. 2023, 420, 118188. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Q.; Li, Y.; Ouyang, Y. Hydrophobic microcapsule modification of nitrogen–phosphorus flame retardant and its application in lignocellulosic materials. J. Therm. Anal. Calorim. 2022, 147, 13217–13229. [Google Scholar] [CrossRef]
- Hu, J.; Xu, S.; Wang, H.; Ding, C.-J.; Liu, Z.-H.; Ma, J.-H.; Li, Z.-Z.; Wang, Q.; Zhu, J.-Y.; Qu, N.; et al. Dual Modification of Layered Double Hydroxide by Phosphonitrilic Chloride Trimer and Aniline for Enhancing the Flame Retardancy of Polypropylene. ACS Appl. Polym. Mater. 2022, 4, 4166–4178. [Google Scholar] [CrossRef]
- Ayesh, M.; Horrocks, A.R.; Kandola, B.K. The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton. Molecules 2022, 27, 8737. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Q.; Uetani, K.; Li, Q.; Lu, P.; Cao, J.; Wang, Q.; Liu, Y.; Li, J.; Quan, Z.; et al. Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as High-Performance Absorption Materials. Adv. Mater. Interfaces 2016, 3, 1600004. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Zhu, H.; Wang, F.; Xu, G.; Shen, H.; Wang, J. Multiscale kapok/cellulose aerogels for oil absorption: The study on structure and oil absorption properties. Ind. Crop. Prod. 2021, 171, 113902. [Google Scholar] [CrossRef]
- Chhajed, M.; Verma, C.; Gupta, P.; Maji, P.K. Multifunctional esterified nanocellulose aerogel: Impact of fatty chain length on oil/water separation and thermal insulation. Cellulose 2022, 30, 1717–1739. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Zeng, H.; Betti, M.; Chen, L. Highly Porous, Hydrophobic, and Compressible Cellulose Nanocrystals/Poly(vinyl alcohol) Aerogels as Recyclable Absorbents for Oil–Water Separation. ACS Sustain. Chem. Eng. 2019, 7, 11118–11128. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Facile Fabrication of Superhydrophobic Wood Aerogel by Vapor Deposition Method for Oil-Water Separation. Surf. Interfaces 2023, 37, 102746. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. 2014, 2, 6337–6342. [Google Scholar] [CrossRef] [Green Version]
- Rafieian, F.; Hosseini, M.; Jonoobi, M.; Yu, Q. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 2018, 25, 4695–4710. [Google Scholar] [CrossRef]
- Guan, H.; Cheng, Z.; Wang, X.-Q. Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents. ACS Nano 2018, 12, 10365–10373. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ke, W.; Liao, Y.C. Elastic nanocellulose/graphene aerogel with excellent shape retention and oil absorption selectivity. J. Taiwan Inst. Chem. Eng. 2020, 111, 261–269. [Google Scholar] [CrossRef]
- Chhajed, M.; Yadav, C.; Agrawal, A.K.; Maji, P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym. 2019, 226, 115286. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, J.; Li, X.; Pan, X.; Qian, C. Preparation and Properties of Novel Superhydrophobic Cellulose Nanofiber Aerogels. J. Nanomater. 2021, 2021, 2631405. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, Z. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mater. 2020, 388, 121804. [Google Scholar] [CrossRef]
Drying Method | Nanocellulose Type | Nanocellulose Diameter/nm | Other Components | Pore Size | Thermal Conductivity/mW m−1K−1 | Refs. |
---|---|---|---|---|---|---|
Supercritical drying | CNF | 3 | - | 30 nm | 18–38 | [38] |
Supercritical drying | CNC | 10–20 | - | 10 nm–1 µm | 40–75 | [39] |
Freeze drying | CNF | 5.7, 16.1 | - | - | 35.36 | [40] |
Freeze drying | TCNF | 5.4 | - | - | 33.7 | [40] |
Freeze drying | CNF | - | - | - | 24–28 | [36] |
Spray freeze drying | CNF | - | - | 10–100 nm | 18–21 | [36] |
Freeze drying | CNF | 20 | MOF | - | 41 | [37] |
Freeze drying | CNF | 20 ± 4 | Bleached cellulose fibers | 5 nm | 23 | [44] |
Freeze drying | CNC | 7 ± 2 | Bleached cellulose fibers | 6–7 nm | 25 | [44] |
Mechanical Treatment | Principle | Characteristics | Refs. |
---|---|---|---|
High-pressure homogenization | The energy generated by high pressure and high-speed movement breaks down the compact structure of fibers, resulting in a reduction in fiber size. | The machine is easily blocked, so it is necessary to control the suspension concentration and fiber size. | [57] |
Microfluidic homogenization | The booster pump pumps the suspension into the small Z-shaped pipeline under high pressure, and fiber opening occurs under the high shear force and high-speed impact force. | (1) Many cycles; (2) High energy consumption; (3) Significant negative impact on the environment; (4) Challenging to realize large-scale application. | [58,59] |
Ball milling | A steel or stone ball is utilized in the ball mill to break and impact the fiber. | This method destroys the crystalline domains of cellulose, leading to a decrease in nanocellulose crystallinity, thus affecting its mechanical and thermal properties. | [60] |
Ultrafine grinding | The strong shear force generated by the rotation of the grindstone destroys the cell wall and hydrogen bonding of fibers. | (1) The machine has a simple structure and stable operation; (2) It can handle highly concentrated suspensions; (3) No need to control fiber size; (4) Grinding stone friction produces a stone powder that contaminates the slurry and is hard to separate efficiently. | [61] |
High-intensity ultrasonication | The cavitation effect caused by high-intensity ultrasound destroys the hydrogen bonds between fiber chains and decomposes cellulose. | (1) Easy to operate; (2) No limitation on the concentration of the sample, and it is possible to prepare a high-concentration nanocellulose suspension; (3) Easy to observe the sample; (4) Low shear force is applied to cellulose, preserving natural fiber length. | [62] |
Pressurized hydrolysis | Subcritical water is used to hydrolyze cellulose with its high ionization efficiency, activity, and diffusion. | (1) Requires high temperature and pressure; (2) High energy consumption. | [63] |
Freeze crushing | The compression of ice crystals breaks the cell wall structure and obtains nanocellulose under high shear force. | It is often used in combination with other treatments. | [64] |
Steam explosion | Use of the explosive power of high-pressure steam in a short time to destroy the fiber structure. | The energy consumption is relatively low. | [50] |
Twin-screw extrusion | During the extrusion process, the shear force coming from screw rotation disintegrates the fibers. | (1) Can produce nanocellulose at a high solids content; (2) Lower energy consumption | [65,66] |
Methods | Mechanical Properties | Limitations | Refs. |
---|---|---|---|
Increase the suspension concentration | A compressive strength of 0.227 MPa, Young’s modulus of 0.223 MPa, and yield stress of 27.47 kPa | (1) Increases the density; (2) Reduces the thermal insulation performance. | [77] |
Regulation of freeze drying parameters | The compressive stress at 90% strain reached 340 kPa and exhibited 85% stress retention after 10 cycles. | Improving the mechanical properties of aerogels solely through adjustments in freeze drying parameters cannot meet the requirements of practical applications. | [85] |
Chemical crosslinking | The maximal shape recovery from a 50% compression strain was up to 93% of its original thickness. | The current crosslinking strategy has defects, such as complex crosslinking processes or the use of toxic crosslinking agents. | [97] |
Introduction of enhanced components | Withstood a high strain of 80% without remarkable geometric deformation and displayed high stress retention of 83.8% after 100 cycles | (1) Increases the density; (2) Affects the flexibility; (3) Resulst in interface bonding problems. | [101] |
Methods | Advantages | Limitations | Refs. |
---|---|---|---|
Surfactant method | (1) Improves the compatibility and storage stability of flame retardants; (2) Reduces the impact of flame retardants on material properties. | The effect of nonionic surfactant modification on inhibiting combustion and reducing smoke release is not obvious. | [116] |
Microencapsulation | (1) Improves flame retardant efficiency; (2) Enhances the mechanical properties and hydrophobicity of materials. | increase the quality of flame retardants. | [117] |
Grafting reaction | (1) Improves the dispersion of flame retardants in the matrix; (2) Enhances flame retardant efficiency; (3) Reduces the impact on material mechanical properties. | Complex preparation processes. | [118] |
Plasma/UV treatments | (1) Strengthens the combination of flame retardant and substrate; (2) Improves the durability of flame retardants. | Inapparent improvement of flame resistance. | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, X.; Yao, L.; Chang, S.; Wang, X. Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review. Molecules 2023, 28, 5836. https://doi.org/10.3390/molecules28155836
Wu Y, Wang X, Yao L, Chang S, Wang X. Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review. Molecules. 2023; 28(15):5836. https://doi.org/10.3390/molecules28155836
Chicago/Turabian StyleWu, Yueqi, Xue Wang, Lihong Yao, Siyu Chang, and Ximing Wang. 2023. "Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review" Molecules 28, no. 15: 5836. https://doi.org/10.3390/molecules28155836
APA StyleWu, Y., Wang, X., Yao, L., Chang, S., & Wang, X. (2023). Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review. Molecules, 28(15), 5836. https://doi.org/10.3390/molecules28155836