Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Artwork and Experimental Design
2.1.1. Preliminary Analysis of the Original Artwork
2.1.2. Preparation of the Laboratory Samples
2.1.3. Application of Protective Coatings
- Chitosan (CS);
- Chitosan with 1.5% nanocellulose dispersion (CS/CNC1.5);
- Chitosan with 3% nanocellulose dispersion (CS/CNC3);
- Chitosan with 6% nanocellulose dispersion (CS/CNC6).
2.1.4. Artificial Ageing
- Irradiance: 60 W/m2 (at 340 nm);
- Black panel temperature: 38 ± 3 °C;
- Relative humidity: 50 ± 5%;
- Light/dark cycle: 102 min light, 18 min dark with condensation.
2.1.5. Coating Removal Tests
2.2. Analytical Investigations
2.2.1. Multispectral Imaging
2.2.2. X-Ray Fluorescence Spectroscopy (EDXRF)
2.2.3. Optical Microscopy
2.2.4. Spectrocolorimetry
2.2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.6. Raman Spectroscopy
2.2.7. SEM-EDS
2.2.8. Contact Angle Measurements
2.2.9. Adhesion Tests (Peel Test)
3. Results
3.1. Multispectral Imaging and and Paint Layer Thickness Measurement
3.2. EDXRF
3.3. Optical Microscopy
3.4. Spectrocolorimetry
3.5. FT-IR Spectroscopy
3.5.1. Characterisation Laboratory Sample
3.5.2. Analyses After Coating Application and Removal
3.6. Raman Spectroscopy
3.7. Contact Angle and Peel Tests
3.8. SEM/EDS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNC | Cellulose Nanocrystals |
CS | Chitosan |
FTIR | Fourier Transform Infrared Spectroscopy |
IR | Infrared |
SEM-EDS | Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy |
UVF | Ultraviolet Fluorescence |
UVF-Y | Ultraviolet Fluorescence with Yellow Filter |
ΔE | Colour Difference |
POSCA | UniPosca Acrylic Marker |
References
- Haiven, M. Art and Money: Three Aesthetic Strategies in an Age of Financialisation. Financ. Soc. 2015, 1, 38. [Google Scholar] [CrossRef]
- Klamer, A.; Petrova, L. Financing the Arts: The Consequences of Interaction Among Artists, Financial Support, and Creativity Motivation. In Anthologie Kulturpolitik; Tröndle, M., Steigerwald, C., Eds.; transcript Verlag: Bielefeld, Germany, 2019; pp. 305–318. [Google Scholar] [CrossRef]
- Taylor, S.; Littleton, K. Art Work or Money: Conflicts in the Construction of a Creative Identity. Sociol. Rev. 2008, 56, 275–292. [Google Scholar] [CrossRef]
- Banks, M. The colours of money: Artmoney as community currency. Int. J. Community Currency Res. 2011, 15, 77–81. [Google Scholar] [CrossRef]
- POSCA USA. High-Quality All Surface Paint Markers. Available online: https://poscausa.com (accessed on 7 April 2025).
- Zmeu, C.N.; Bosch-Roig, P. Risk Analysis of Biodeterioration in Contemporary Art Collections: The Poly-Material Challenge. J. Cult. Herit. 2022, 58, 33–48. [Google Scholar] [CrossRef]
- Llamas-Pacheco, R. Some Theory for the Conservation of Contemporary Art. Stud. Conserv. 2020, 65, 487–498. [Google Scholar] [CrossRef]
- Van de Vall, R.; Van Saaze, V. Conservation of Contemporary Art: Bridging the Gap Between Theory and Practice; Springer Nature: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- Arbizzani, R.; Casellato, U.; Fiorin, E.; Nodari, L.; Russo, U.; Vigato, P.A. Decay Markers for the Preventative Conservation and Maintenance of Paintings. J. Cult. Herit. 2004, 5, 167–182. [Google Scholar] [CrossRef]
- Macro, N.; Ioele, M.; Cattaneo, B.; De Cesare, G.; Di Lorenzo, F.; Storari, M.; Lazzari, M. Detection of Bronze Paint Degradation Products in a Contemporary Artwork by Combined Non-Invasive and Micro-Destructive Approach. Microchem. J. 2020, 159, 105482. [Google Scholar] [CrossRef]
- Lazzari, M.; Reggio, D. What Fate for Plastics in Artworks? An Overview of Their Identification and Degradative Behaviour. Polymers 2021, 13, 883. [Google Scholar] [CrossRef]
- Zaratti, C.; Brunetti, S.; Fondi, V.; Alisi, C.; Prestileo, F.; de Caro, T.; Montorsi, S.; Macchia, A. Luca Vitone: Monitoring of Four Living Canvases. Heritage 2024, 7, 1438–1452. [Google Scholar] [CrossRef]
- Paolino, B.; Sorrentino, M.C.; Macchia, A.; Troisi, J.; Zaratti, C.; Hansen, A.; Ilardi, S.; Russo, G.; Lahoz, E.; Pacifico, S. Lavender Essential Oil for a Contactless Application for Contemporary Art Conservation: A Case Study. npj Herit. Sci. 2025, 13, 8. [Google Scholar] [CrossRef]
- Brandi, C. Teoria del Restauro; Einaudi: Turin, Italy, 2000; ISBN 978-8806155650. [Google Scholar]
- Verbeeck, M. Brandi and the restoration of contemporary art. One side and the other the Teoria. Conversaciones 2019, 7, 211–226. [Google Scholar]
- Jones, B.J.; Cammidge, J.W.; Evans, C.; Scott, G.; Sherriffs, P.B.; Breen, F.; Andersen, P.M.B.; Popov, K.T.; O’Hara, J. Degradation of Polymer Banknotes through Handling, and Effect on Fingermark Visualisation. Sci. Justice 2022, 62, 644–656. [Google Scholar] [CrossRef]
- Kyrychok, T.; Shevchuk, A.; Nesterenko, V.; Kyrychok, P. Banknote Paper Deterioration Factors: Circulation Simulator Method. BioResources 2013, 9, 710–724. [Google Scholar] [CrossRef]
- Yousef, S.; Hamdy, M.; Tatariants, M.; Tuckute, S.; El-Abden, S.Z.; Kliucininkas, L.; Baltusnikas, A. Sustainable Industrial Technology for Recovery of Cellulose from Banknote Production Waste and Reprocessing into Cellulose Nanocrystals. Resour. Conserv. Recycl. 2019, 149, 510–520. [Google Scholar] [CrossRef]
- Chalhoub, G.; Hamdan, M. Banknote Substrate Durability: A Live Circulation Comparative Study; Banque du Liban: Beirut, Lebanon, 2015; p. 4. Available online: https://www.academia.edu/74702937 (accessed on 31 March 2025).
- Ion, R.-M.; Nuta, A.; Sorescu, A.-A.; Iancu, L. Photochemical Degradation Processes of Painting Materials from Cultural Heritage. In Photochemistry and Photophysics: Fundamentals to Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Barni, D.; Raimondo, L.; Galli, A.; Yivlialin, R.; Caglio, S.; Martini, M.; Sassella, A. Chemical Separation of Acrylic Color Components Enabling the Identification of the Pigment Spectroscopic Response. Eur. Phys. J. Plus 2021, 136, 254. [Google Scholar] [CrossRef]
- Christensen, P.A.; Dilks, A.; Egerton, T.A. Infrared Spectroscopic Evaluation of the Photodegradation of Paint. Part II. The Effect of UV Intensity and Wavelength on the Degradation of Acrylic Films Pigmented with Titanium Dioxide. J. Mater. Sci. 2000, 35, 5353–5358. [Google Scholar] [CrossRef]
- Mejía-González, A.; Zetina, S.; Espinosa-Pesqueira, M.E.; Esturau-Escofet, N. Characterisation of Commercial Artists’ Acrylic Paints and the Influence of UV Light on Aging. Int. J. Polym. Anal. Charact. 2017, 22, 473–482. [Google Scholar] [CrossRef]
- Iscen, A.; Forero-Martinez, N.C.; Valsson, O.; Kremer, K. Molecular Simulation Strategies for Understanding the Degradation Mechanisms of Acrylic Polymers. Macromolecules 2023, 56, 3272–3285. [Google Scholar] [CrossRef]
- Iscen, A.; Forero-Martinez, N.C.; Valsson, O.; Kremer, K. Acrylic Paints: An Atomistic View of Polymer Structure and Effects of Environmental Pollutants. J. Phys. Chem. B 2021, 125, 10854–10865. [Google Scholar] [CrossRef]
- Melo, M.J.; Ferreira, J.L.; Parola, A.J.; de Melo, J.S.S. Photochemistry for Cultural Heritage. In Applied Photochemistry; Bergamini, G., Silvi, S., Eds.; Lecture Notes in Chemistry; Springer: Cham, Switzerland, 2016; Volume 92. [Google Scholar] [CrossRef]
- Macchia, A.; Schuberthan, L.M.; Ferro, D.; Colasanti, I.A.; Montorsi, S.; Biribicchi, C.; Barbaccia, F.I.; La Russa, M.F. Analytical Investigations of XIX–XX Century Paints: The Study of Two Vehicles from the Museum for Communications of Frankfurt. Molecules 2023, 28, 2197. [Google Scholar] [CrossRef]
- Germinario, G.; Logiodice, A.L.; Mezzadri, P.; Di Fusco, G.; Ciabattoni, R.; Melica, D.; Calia, A. Integrated Investigations to Study the Materials and Degradation Issues of the Urban Mural Painting Ama Il Tuo Sogno by Jorit Agoch. Sustainability 2024, 16, 5069. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage—An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Nodari, L.; Tresin, L.; Benedetti, A.; Tufano, M.K.; Tomasin, P. Conservation of Contemporary Art: Alteration Phenomena in a XXI Century Artwork. From Contactless in Situ Investigations to Laboratory Accelerated Ageing Tests. J. Cult. Herit. 2018, 35, 288–296. [Google Scholar] [CrossRef]
- Clare, T.L.; Swartz, N.A. Characterisation of High Performance Protective Coatings for Use on Culturally Significant Works. In Intelligent Coatings for Corrosion Control; Tiwari, A., Rawlins, J., Hihara, L.H., Eds.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 641–671. [Google Scholar] [CrossRef]
- Masi, G.; Josse, C.; Esvan, J.; Chiavari, C.; Bernardi, E.; Martini, C.; Bignozzi, M.C.; Monticelli, C.; Zanotto, F.; Balbo, A.; et al. Evaluation of the Protectiveness of an Organosilane Coating on Patinated Cu-Si-Mn Bronze for Contemporary Art. Prog. Org. Coat. 2019, 127, 286–299. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S.; Pellis, G.; Scalarone, D. Efficacy of Colour Protectors in Urban Art Paintings under Different Conditions: From a Real Mural to the Laboratory. Heritage 2023, 6, 3475–3498. [Google Scholar] [CrossRef]
- Macchia, A.; Ruffolo, S.A.; Rivaroli, L.; Malagodi, M.; Licchelli, M.; Rovella, N.; Randazzo, L.; La Russa, M.F. Comparative Study of Protective Coatings for the Conservation of Urban Art. J. Cult. Herit. 2020, 41, 232–237. [Google Scholar] [CrossRef]
- Cianci, C.; Andriulo, F.; Giorgi, R. Formulation of a New Sustainable Hybrid Coating for the Conservation of Street-Art: Characterization and Application. Prog. Org. Coat. 2024, 200, 109026. [Google Scholar] [CrossRef]
- Macchia, A.; Capriotti, S.; Rivaroli, L.; Ruffolo, S.A.; La Russa, M.F. Protection of Urban Art Painting: A Laboratory Study. Polymers 2021, 14, 162. [Google Scholar] [CrossRef]
- Andrés-Herguedas, L.; Pozo-Antonio, J.S.; Alonso-Villar, E.M. Protection of Contemporary Mural Artwork: Evaluation of a Fixing Primer and Colour Protectors. Prog. Org. Coat. 2025, 204, 109252. [Google Scholar] [CrossRef]
- Swarupa, S.; Thareja, P. Techniques, Applications and Prospects of Polysaccharide and Protein Based Biopolymer Coatings: A Review. Int. J. Biol. Macromol. 2024, 266, 131104. [Google Scholar] [CrossRef]
- Janesch, J.; Czabany, I.; Hansmann, C.; Mautner, A.; Rosenau, T.; Gindl-Altmutter, W. Transparent Layer-By-Layer Coatings Based on Biopolymers and CeO2 to Protect Wood from UV Light. Prog. Org. Coat. 2020, 138, 105409. [Google Scholar] [CrossRef]
- Sarfraz, M.H.; Hayat, S.; Siddique, M.H.; Aslam, B.; Ashraf, A.; Saqalein, M.; Khurshid, M.; Sarfraz, M.F.; Afzal, M.; Muzammil, S. Chitosan Based Coatings and Films: A Perspective on Antimicrobial, Antioxidant, and Intelligent Food Packaging. Prog. Org. Coat. 2024, 188, 108235. [Google Scholar] [CrossRef]
- Camargos, C.H.M.; Poggi, G.; Chelazzi, D.; Baglioni, P.; Rezende, C.A. Protective Coatings Based on Cellulose Nanofibrils, Cellulose Nanocrystals, and Lignin Nanoparticles for the Conservation of Cellulosic Artifacts. ACS Appl. Nano Mater. 2022, 5, 13245–13259. [Google Scholar] [CrossRef]
- Macchia, A.; Marinelli, L.; Barbaccia, F.I.; de Caro, T.; Hansen, A.; Schuberthan, L.M.; Izzo, F.C.; Pintus, V.; Chiari, K.T.; Francesco, M. Mattel’s ©Barbie: Preventing Plasticizers Leakage in PVC Artworks and Design Objects through Film-Forming Solutions. Polymers 2024, 16, 1888. [Google Scholar] [CrossRef]
- Giuliani, C.; Pascucci, M.; Riccucci, C.; Messina, E.; Salzano de Luna, M.; Lavorgna, M.; Ingo, G.M.; Di Carlo, G. Chitosan-Based Coatings for Corrosion Protection of Copper-Based Alloys: A Promising More Sustainable Approach for Cultural Heritage Applications. Prog. Org. Coat. 2018, 122, 138–146. [Google Scholar] [CrossRef]
- Ermolyuk, A.; Avdanina, D.; Khayrova, A.; Lopatin, S.; Shumikhin, K.; Kolganova, T.; Simonenko, N.; Lunkov, A.; Varlamov, V.; Shitov, M.; et al. Search for New Materials Based on Chitosan for the Protection of Cultural Heritage. Herit. Sci. 2024, 12, 330. [Google Scholar] [CrossRef]
- Zhgun, A.; Avdanina, D.; Shagdarova, B.; Nuraeva, G.; Shumikhin, K.; Zhuikova, Y.; Il’ina, A.; Troyan, E.; Shitov, M.; Varlamov, V. The Application of Chitosan for Protection of Cultural Heritage Objects of the 15–16th Centuries in the State Tretyakov Gallery. Materials 2022, 15, 7773. [Google Scholar] [CrossRef]
- Silva, N.C.; Madureira, A.R.; Pintado, M.; Moreira, P.R. Chitosan Coatings Reinforced with Cellulose Crystals and Oregano Essential Oil as Antimicrobial Protection against the Microbiological Contamination of Stone Sculptures. Cellulose 2024, 31, 9825–9845. [Google Scholar] [CrossRef]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef]
- N.Hattawi, S.; Ahmed, A.G.; Fadhil, F.M.; Kuot, S.R.; Alsubaie, M.S.; L.Alazmi, M.; Fetouh, H.A. New Approach for Processing Chitosan as Low Cost Protective Hybrid Coating for C-Steel in Acid Media. Heliyon 2024, 10, e33743. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vatankhah, M.; Hassanisaadi, M.; Shafiei-Hematabad, Z.; Kennedy, J.F. Advancements in Coating Technologies: Unveiling the Potential of Chitosan for the Preservation of Fruits and Vegetables. Int. J. Biol. Macromol. 2024, 254, 127677. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Preparation and Applications of Chitosan and Cellulose Composite Materials. J. Environ. Manag. 2022, 301, 113850. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.Y.; Mubarak, N.M.; Tanjung, F.A. Structure–Property Relationship of Cellulose Nanowhiskers Reinforced Chitosan Biocomposite Films. J. Environ. Chem. Eng. 2017, 5, 6132–6136. [Google Scholar] [CrossRef]
- H.P.S., A.K.; Saurabh, C.K.; A.S., A.; Nurul Fazita, M.R.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; Haafiz, M.K.M.; Dungani, R. A Review on Chitosan–Cellulose Blends and Nanocellulose Reinforced Chitosan Biocomposites: Properties and Their Applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Dehnad, D.; Emam-Djomeh, Z.; Mirzaei, H.; Jafari, S.-M.; Dadashi, S. Optimization of Physical and Mechanical Properties for Chitosan–Nanocellulose Biocomposites. Carbohydr. Polym. 2014, 105, 222–228. [Google Scholar] [CrossRef]
- Niu, X.; Liu, Y.; Song, Y.; Han, J.; Pan, H. Rosin Modified Cellulose Nanofiber as a Reinforcing and Co-Antimicrobial Agents in Polylactic Acid /Chitosan Composite Film for Food Packaging. Carbohydr. Polym. 2018, 183, 102–109. [Google Scholar] [CrossRef]
- Mao, H.; Wei, C.; Gong, Y.; Wang, S.; Ding, W. Mechanical and Water-Resistant Properties of Eco-Friendly Chitosan Membrane Reinforced with Cellulose Nanocrystals. Polymers 2019, 11, 166. [Google Scholar] [CrossRef]
- Sakai, Y.; Hayano, K.; Yoshioka, H.; Fujieda, T.; Saito, K.; Yoshioka, H. Chitosan-Coating of Cellulosic Materials Using an Aqueous Chitosan-CO2 Solution. Polym. J. 2002, 34, 144–148. [Google Scholar] [CrossRef]
- Kang, X.; Kuga, S.; Wang, C.; Zhao, Y.; Wu, M.; Huang, Y. Green Preparation of Cellulose Nanocrystal and Its Application. ACS Sustain. Chem. Eng. 2018, 6, 2954–2960. [Google Scholar] [CrossRef]
- UNI EN ISO 16474-2:2014; Paints and Varnishes-Methods of Exposure to Laboratory Light Sources-Part 2: Xenon-Arc Lamps. International Organization for Standardization: Geneva, Switzerland, 2014.
- Pan, S.; Wu, S.; Kim, J. Preparation of Glucosamine by Hydrolysis of Chitosan with Commercial α-Amylase and Glucoamylase. J. Zhejiang Univ. Sci. B 2011, 12, 931–934. [Google Scholar] [CrossRef]
- Qian, J.; Shi, B.; Mo, L.; Shu, D.; Guo, H. Preparation of Chitooligosaccharides by α-Amylase from Chitosan with Oxidative Pretreatment. J. Chem. Technol. Biotechnol. 2021, 96, 3408–3413. [Google Scholar] [CrossRef]
- Rokhati, N.; Widjajanti, P.; Pramudono, B.; Susanto, H. Performance Comparison of α- and β-Amylases on Chitosan Hydrolysis. ISRN Chem. Eng. 2013, 2013, 186159. [Google Scholar] [CrossRef]
- Tortora, M.; Gherardi, F.; Ferrari, E.; Colston, B. Biocleaning of Starch Glues from Textiles by Means of α-Amylase-Based Treatments. Appl. Microbiol. Biotechnol. 2020, 104, 5361–5370. [Google Scholar] [CrossRef] [PubMed]
- Nurhaeni, N.; Ridhay, A.; Laenggeng, A.H. Depolymerisation of Chitosan from Snail (Pilla ampullaceae) Field Shell Using α-Amylase. J. Phys. Conf. Ser. 2019, 1242, 012005. [Google Scholar] [CrossRef]
- Pinto, A.P.F.; Rodrigues, J.D. Impacts of Consolidation Procedures on Colour and Absorption Kinetics of Carbonate Stones. Stud. Conserv. 2014, 59, 79–90. [Google Scholar] [CrossRef]
- Valentini, F.; Pallecchi, P.; Relucenti, M.; Donfrancesco, O.; Sottili, G.; Pettiti, I.; Mussi, V.; De Angelis, S.; Scatigno, C.; Festa, G. SiO2 Nanoparticles as New Repairing Treatments toward the Pietraforte Sandstone in Florence Renaissance Buildings. Crystals 2022, 12, 1182. [Google Scholar] [CrossRef]
- Rbihi, S.; Aboulouard, A.; Laallam, L.; Jouaiti, A. Contact Angle Measurements of Cellulose Based Thin Film Composites: Wettability, Surface Free Energy and Surface Hardness. Surf. Interfaces 2020, 21, 100708. [Google Scholar] [CrossRef]
- Talebi, A.; Labbaf, S.; Atari, M.; Parhizkar, M. Polymeric Nanocomposite Structures Based on Functionalised Graphene with Tunable Properties for Nervous Tissue Replacement. ACS Biomater. Sci. Eng. 2021, 7, 4591–4601. [Google Scholar] [CrossRef]
- Atanassova, V.; Ghervase, L.; Cortea, I.M. Laser Removal of Marker Tags from a Contemporary Graffiti Painting. J. Phys. Conf. Ser. 2021, 1859, 012001. [Google Scholar] [CrossRef]
- Marazioti, V.; Douvas, A.M.; Katsaros, F.; Koralli, P.; Chochos, C.; Gregoriou, V.G.; Boyatzis, S.; Facorellis, Y. Chemical Characterisation of Artists’ Spray-Paints: A Diagnostic Tool for Urban Art Conservation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122375. [Google Scholar] [CrossRef] [PubMed]
- El-Sakhawy, M.; Kamel, S.; Salama, A.; Tohamy, H.-A.S. Preparation and Infrared Study of Cellulose Based Amphiphilic Materials. Available online: https://www.researchgate.net/publication/326294827_Preparation_and_infrared_study_of_cellulose_based_amphiphilic_materials (accessed on 7 April 2025).
- Geminiani, L.; Campione, F.P.; Corti, C.; Motella, S.; Rampazzi, L.; Recchia, S.; Luraschi, M. Unveiling the Complexity of Japanese Metallic Threads. Heritage 2021, 4, 4017–4039. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Hwang, H.; Jo, H.-S.; Choi, S.; Kim, H.-J.; Kim, S.-E.; Park, K. Tannylated Calcium Carbonate Materials with Antacid, Anti-Inflammatory, and Antioxidant Effects. Int. J. Mol. Sci. 2021, 22, 4614. [Google Scholar] [CrossRef]
- dos Santos, V.H.J.M.; Pontin, D.; Ponzi, G.G.D.; e Stepanha, A.S.D.G.; Martel, R.B.; Schütz, M.K.; Einloft, S.M.O.; Dalla Vecchia, F. Application of Fourier Transform Infrared Spectroscopy (FTIR) Coupled with Multivariate Regression for Calcium Carbonate (CaCO3) Quantification in Cement. Constr. Build. Mater. 2021, 313, 125413. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Ma, L.; Renner, P.; Parkinson, D.Y.; Liang, H. Correction to “Design and Synthesis of Lignin-Based Flexible Supercapacitors”. ACS Sustain. Chem. Eng. 2020, 8, 9597–9598. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Hadi, I.S.; Yas, R.M. Gamma Radiation Effect on Characterizations of Gold Nanoparticles Synthesized Using Green Method. Iraqi J. Sci. 2022, 63, 4305–4313. [Google Scholar] [CrossRef]
- Jini, D.; Aravind, M.; Alsaiari, N.S.; Alzahrani, F.M.; Sillanpää, M. Investigation on Structural, Optical, Morphological, Electrical, Mechanical and Biological Activities of Pure and Crystal Violet Dye-Doped Epsomite Single Crystals. Journal of materials science. Mater. Electron. 2023, 34, 61. [Google Scholar] [CrossRef]
- Wiesinger, R.; Pagnin, L.; Anghelone, M.; Moretto, L.M.; Orsega, E.F.; Schreiner, M. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angew. Chem. 2018, 130, 7523–7529. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Evaluation of the Impacts of Four Weathering Methods on Two Acrylic Paints: Showcasing Distinctions and Particularities. Coatings 2019, 9, 121. [Google Scholar] [CrossRef]
- Ortiz-Herrero, L.; Cardaba, I.; Setien, S.; Bartolomé, L.; Alonso, M.L.; Maguregui, M.I. OPLS Multivariate Regression of FTIR-ATR Spectra of Acrylic Paints for Age Estimation in Contemporary Artworks. Talanta 2019, 205, 120114. [Google Scholar] [CrossRef]
- Lakshmi, D.; Rajendran, S.; Sathiyabama, J.; Joseph Rathis, R.; Santhana Prabha, S. Application of Infra-Red Spectroscopy in Corrosion Inhibition Studies. J. Corros. Sci. Eng. 2016, 3, 181–203. [Google Scholar]
- Lomax, S.Q.; Lomax, J.F.; Graham, T.K.; Moore, T.J.T.; Knapp, C.G. Historical Azo Pigments: Synthesis and Characterization. J. Cult. Herit. 2019, 35, 218–224. [Google Scholar] [CrossRef]
- Allen, N.S.; Regan, C.J.; McIntyre, R.; Johnson, B.; Dunk, W.A.E. The Photostabilisation of Water-Borne Acrylic Coating Systems. Polym. Degrad. Stab. 1996, 52, 67–72. [Google Scholar] [CrossRef]
- Pintus, V.; Schreiner, M. Characterization and Identification of Acrylic Binding Media: Influence of UV Light on the Ageing Process. Anal. Bioanal. Chem. 2010, 399, 2961–2976. [Google Scholar] [CrossRef] [PubMed]
- Ion, R.-M.; Ion, M.L.; Niculescu, V.I.R.; Serban, S. Spectral Analysis of Original and Restaurated Ancient Paper from Romanian Gospel. Rom. J. Phys. 2008, 53, 781–791. [Google Scholar]
- Guarnieri, N.; Di Benedetto, A.; Comelli, D.; Mirani, F.; Dellasega, D.; Pagnin, L.; Goidanich, S.; Toniolo, L. Rapid Chromatic Alteration of Street Art: Mechanisms of Deterioration of the Painting Materials of the 20 Years of Freedom and Democracy Mural. Dye. Pigment. 2025, 239, 112733. [Google Scholar] [CrossRef]
- Balakhnina, I.A.; Chikishev, A.Y.; Brandt, N.N. Raman Spectroscopy of Thermo- and Laser-Induced Transformations of Gouache Paint Layer of Copper Phthalocyanine Blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124430. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Pintus, V.; Schreiner, M. Photostability and Influence of Phthalocyanine Pigments on the Photodegradation of Acrylic Paints under Accelerated Solar Radiation. Polym. Degrad. Stab. 2017, 146, 13–23. [Google Scholar] [CrossRef]
- Bauer, E.M.; De Caro, T.; Tagliatesta, P.; Carbone, M. Unraveling the Real Pigment Composition of Tattoo Inks: The Case of Bi-Components Phthalocyanine Based Greens. Dye. Pigment. 2019, 167, 225–235. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, H.; Huang, J.; Zhao, J.; Yan, B.; Ma, S.; Zhang, H.; Fan, D. The Physicochemical Properties of Chitosan Prepared by Microwave Heating. Food Sci. Nutr. 2020, 8, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Queiroz, M.; Melo, K.; Sabry, D.; Sassaki, G.; Rocha, H. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2014, 13, 141–158. [Google Scholar] [CrossRef]
- Olafadehan, O.A.; Abhulimen, K.E.; Adeleke, A.I.; Njoku, C.V.; Amoo, K.O. Production and Characterisation of Derived Composite Biosorbents from Animal Bone. Afr. J. Pure Appl. Chem. 2019, 13, 12–26. [Google Scholar] [CrossRef]
- Kaya, M.; Seyyar, O.; Baran, T.; Turkes, T. Bat Guano as New and Attractive Chitin and Chitosan Source. Front. Zool. 2014, 11, 59. [Google Scholar] [CrossRef]
- Harraz, F.A.; Ismail, A.A.; Bouzid, H.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assiri, M.S. Surface-Enhanced Raman Scattering (SERS)-Active Substrates from Silver Plated-Porous Silicon for Detection of Crystal Violet. Appl. Surf. Sci. 2015, 331, 241–247. [Google Scholar] [CrossRef]
- Zhang, K.; Zeng, T.; Tan, X.; Wu, W.; Tang, Y.; Zhang, H. A Facile Surface-Enhanced Raman Scattering (SERS) Detection of Rhodamine 6G and Crystal Violet Using Au Nanoparticle Substrates. Appl. Surf. Sci. 2015, 347, 569–573. [Google Scholar] [CrossRef]
- Badawi, H.M. Vibrational Spectra and Assignments of 2-Phenylethanol and 2-Phenoxyethanol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Fremout, W.; Saverwyns, S. Identification of Synthetic Organic Pigments: The Role of a Comprehensive Digital Raman Spectral Library. J. Raman Spectrosc. 2012, 43, 1536–1544. [Google Scholar] [CrossRef]
- Germinario, G.; van der Werf, I.D.; Sabbatini, L. Chemical Characterisation of Spray Paints by a Multi-Analytical (Py/GC–MS, FTIR, μ-Raman). Approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Moens, L.; Edwards, H.G.M.; Dams, R. Raman Spectroscopic Database of Azo Pigments and Application to Modern Art Studies. J. Raman Spectrosc. 2000, 31, 509–517. [Google Scholar] [CrossRef]
- Ahmad, M.K.; Mokhtar, S.M.; Soon, C.F.; Nafarizal, N.; Suriani, A.B.; Mohamed, A.; Mamat, M.H.; Malek, M.F.; Shimomura, M.; Murakami, K. Raman Investigation of Rutile-Phased TiO2 Nanorods/Nanoflowers with Various Reaction Times Using One Step Hydrothermal Method. J. Mater. Sci. Mater. Electron. 2016, 27, 7920–7926. [Google Scholar] [CrossRef]
- Sacco, A.; Mandrile, L.; Tay, L.-L.; Itoh, N.; Raj, A.; Moure, A.; Del Campo, A.; Fernandez, J.F.; Paton, K.R.; Wood, S.; et al. Quantification of Titanium Dioxide (TiO2) Anatase and Rutile Polymorphs in Binary Mixtures by Raman Spectroscopy: An Interlaboratory Comparison. Metrologia 2023, 60, 055011. [Google Scholar] [CrossRef]
- Chen, G. Rapid Synthesis of Rutile TiO2 Powders Using Microwave Heating. J. Alloys Compd. 2015, 651, 503–508. [Google Scholar] [CrossRef]
- Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide. Sci. World J. 2013, 2013, e208081. [Google Scholar] [CrossRef] [PubMed]
- Fridrichová, J.; Bačík, P.; Illášová, Ľ.; Kozáková, P.; Škoda, R.; Pulišová, Z.; Fiala, A. Raman and Optical Spectroscopic Investigation of Gem-Quality Smoky Quartz Crystals. Vib. Spectrosc. 2016, 85, 71–78. [Google Scholar] [CrossRef]
- Bouchard, M.; Rivenc, R.; Menke, C.; Learner, T. Micro-FTIR and Micro-RAMAN Study of Paints Used by Sam Francis. Carrie Menke. Available online: https://ucmerced.d8.theopenscholar.com/cmenke/publications/micro-ftir-and-micro-raman-study-paints-used-sam-francis (accessed on 31 March 2025).
- Tian, Y.; Ya, G.; Qiang, L.; Maoling, T.; Xiaodong, S. Removal and recovery of triphenylmethane dyes from wastewater with temperature-sensitive magnetic ionic liquid aqueous two-phase system. J. Clean. Prod. 2021, 328, 129648. [Google Scholar] [CrossRef]
- Freeman, H.S.; Peters, A.T. Colorants for Non-Textile Applications; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 978-0-444-82888-0. Available online: https://www.sciencedirect.com/book/9780444828880/colorants-for-non-textile-applications (accessed on 7 April 2025).
- Zamalloa Jara, M.A.; Luízar Obregón, C.; Araujo Del Castillo, C. Exploratory Analysis for the Identification of False Banknotes Using Portable X-Ray Fluorescence Spectrometer. Appl. Radiat. Isot. 2018, 135, 212–218. [Google Scholar] [CrossRef]
- Sabatini, F.; Degano, I. Investigating the Fragmentation Pathways of β-Naphthol Pigments by Liquid Chromatography—Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8789. [Google Scholar] [CrossRef]
- Fei, X.; Zhang, T.; Zhou, C. Modification study involving a Naphthol as red pigment. Dye. Pigment. 2000, 44, 75–80. [Google Scholar] [CrossRef]
- Christie, R.; Abel, A. Phthalocyanine Pigments: General Principles. Phys. Sci. Rev. 2021, 6, 671–677. [Google Scholar] [CrossRef]
- Hakeim, O.A.; Diab, H.A.; Adams, J. Preparation and Characterization of UV Curable-Encapsulated Phthalocyanine Blue Pigment. Prog. Org. Coat. 2015, 84, 70–78. [Google Scholar] [CrossRef]
ID | VIS | UVF-Y | IR960 |
---|---|---|---|
Artwork |
No Coating | After Coating Application | |
---|---|---|
VIS | ||
UVF | ||
UVF-Y | ||
IR960 |
Sample | Before Ageing (μm) | SD | After Ageing (μm) | SD | |
---|---|---|---|---|---|
Banknote used by RichardHTT | coating | 935 | 102 | ||
Banknote used in experimentation | No coating | 924 | 105 | ||
RichardHTT pictorial layer | No coating | 120 | 62 | ||
Banknote + red POSCA | No coating | 1065 | 112 | 1062 | 115 |
with CS coating | 1770 | 60 | 1690 | 90 | |
Banknote + blue POSCA | No coating | 1023 | 116 | 1025 | 118 |
with CS/CNC3 coating | 2010 | 90 | 1940 | 120 | |
Banknote + yellow POSCA | No coating | 1061 | 122 | 1060 | 125 |
with CS/CNC6 coating | 2250 | 150 | 2200 | 190 | |
Banknote + green POSCA | No coating | 1099 | 118 | 1102 | 120 |
with CS/CNC1.5 coating | 2240 | 70 | 2010 | 110 |
Aluminium (Al) | Silicon (Si) | Sulphur (S) | Titanium (Ti) | Iron (Fe) | Zinc (Zn) | Copper (Cu) | Gold (Au) | |
---|---|---|---|---|---|---|---|---|
Spot 1 | 0.00 | 2.35 | 1.12 | 86.27 | 6.53 | 0.58 | 0.00 | 3.45 |
Spot 2 | 73.93 | 1.61 | 0.67 | 26.06 | 0.92 | 0.05 | 0.37 | 0.00 |
Spot 3 | 15.28 | 22.59 | 1.05 | 61.33 | 2.84 | 0.13 | 0.15 | 0.00 |
Spot 4 | 14.69 | 21.43 | 0.00 | 67.03 | 0.88 | 0.03 | 0.00 | 0.00 |
Spot 5 | 10.10 | 17.14 | 0.12 | 76.25 | 0.51 | 0.00 | 0.03 | 0.00 |
Spot 6 | 14.69 | 21.64 | 0.46 | 65.91 | 0.87 | 0.24 | 0.08 | 0.00 |
Spot 7 | 13.47 | 18.83 | 0.22 | 70.90 | 0.50 | 0.15 | 0.10 | 0.00 |
Spot 8 | 12.11 | 21.01 | 0.48 | 68.96 | 0.98 | 0.21 | 0.00 | 0.00 |
Spot 9 | 10.20 | 17.35 | 0.55 | 75.10 | 0.61 | 0.25 | 0.15 | 0.00 |
Spot 10 | 12.38 | 18.71 | 1.18 | 67.83 | 2.31 | 0.90 | 0.00 | 0.36 |
Spot 11 | 4.04 | 7.60 | 1.91 | 79.62 | 6.69 | 0.29 | 0.22 | 0.00 |
Aluminium (Al) | Silicon (Si) | Sulphur (S) | Titanium (Ti) | Iron (Fe) | Zinc (Zn) | Copper (Cu) | Gold (Au) | |
---|---|---|---|---|---|---|---|---|
Background banknote watermark | 5.50 | 3.96 | 0.44 | 80.07 | 7.56 | 0.42 | 0.88 | 1.17 |
Black colour | 0.00 | 4.08 | 5.71 | 79.78 | 6.61 | 0.76 | 0.68 | 3.39 |
Red colour | 13.43 | 20.75 | 0.65 | 63.24 | 1.38 | 0.10 | 0.00 | 0.00 |
Light-blue colour | 10.58 | 17.96 | 0.33 | 69.76 | 0.86 | 0.05 | 0.00 | 0.27 |
Blue colour | 8.80 | 18.18 | 1.66 | 66.25 | 2.45 | 0.56 | 0.00 | 1.14 |
White colour | 10.99 | 17.65 | 0.26 | 70.41 | 0.47 | 0.03 | 0.00 | 0.00 |
Yellow colour | 12.71 | 21.16 | 0.75 | 63.56 | 1.26 | 0.00 | 0.00 | 0.10 |
Green colour | 15.99 | 23.47 | 0.77 | 56.83 | 1.50 | 0.07 | 0.00 | 0.94 |
Pink colour | 13.92 | 1.66 | 0.84 | 81.62 | 1.39 | 0.08 | 0.00 | 0.00 |
ID | Non-Aged | Aged | ||
---|---|---|---|---|
VIS | UV | VIS | UV | |
Black | ||||
Red | ||||
Light blue | ||||
Blue | ||||
White | ||||
Yellow | ||||
Green | ||||
Pink |
Coating | Non-Treated | Non-Aged | Aged | ||
---|---|---|---|---|---|
VIS | UV | VIS | UV | ||
CS | |||||
CS/CNC3 | |||||
CS/CNC6 | |||||
CS/CNC1.5 |
Marker | ΔE Before Coating: Non-Aged vs. Aged | ΔE Before vs. After Coating Application | ΔE Coated: Non-Aged vs. Aged |
---|---|---|---|
Black | 14.86 | 2.46 | 1.99 |
Red | 6.67 | 1.24 | 0.85 |
Light blue | 5.42 | 1.94 | 2.15 |
Blue | 18.20 | 4.27 | 6.90 |
White | 1.37 | 0.58 | 0.51 |
Yellow | 4.56 | 1.53 | 2.03 |
Green | 1.10 | 2.03 | 1.89 |
Pink | 3.57 | 1.41 | 1.67 |
Vibrational Mode | Black | Red | Light Blue | Blue | White | Yellow | Green | Pink |
---|---|---|---|---|---|---|---|---|
Multiphoton (TiO2) | 252 | 262 | 264 | 250 | 264 | 271 | 257 | |
Lattice mode Si-O-Si | 329 | 322 | 327 | 315 | ||||
Lattice mode Si-O-Si | 345 | 352 | 357 | 359 | 352 | |||
Eg mode (TiO2) | 452 | 441 | 450 | 445 | 413 | 452 | ||
ν Si-O/Al-O | 483 | 485 | 489 | 503 | 501 | 475 | 543 | |
A1g mode (TiO2) | 613 | 613 | 601 | 613 | 613 | 605 | 615 | |
Macrocycle deformation | 682 | 684 | 684 | |||||
δ(C-H)/δ aromatic ring | 726 | 738 | 749 | 743 | ||||
Aromatic ring breathing | 754 | 754 | 782 | 775 | ||||
νC-O-C/νC-C-C /νC-N/macrocycle deformation | 801 | 838 | 819 | 852 | ||||
νC-O-C/benzene breathing | 924 | |||||||
Benzene breathing | 1016 | 1002 | 1005 | |||||
ν(C-C) | 1030 | |||||||
ν(C-C) | 1035 | 1040 | 1042 | 1030 | 1028 | 1028 | 1035 | |
ν(C-H) | 1172 | 1165 | 1149 | 1177 | 1174 | 1165 | 1163 | 1165 |
δ(CH2)/δ(CH3) | 1249 | 1277 | 1279 | 1272 | ||||
ν(C-N=N)/ring C=C | 1335 | 1323 | 1346 | 1344 | 1335 | 1335 | 1325 | |
ν(C-N=N)/ring C=C/δ aromatic ring | 1395 | 1374 | 1377 | 1393 | 1435 | 1409 | 1391 | 1395 |
ν(C=C)/ν(C-N) | 1532 | 1530 | 1532 | 1530 | 1532 | 1532 | 1530 | 1523 |
ν(C=C) conjugated | 1620 | 1616 | 1609 | 1595 | 1597 | 1602 | 1611 | |
ν(C=O) conjugated | 1655 | 1637 | 1650 | |||||
ν(C=O) stretching | 1734 | 179 | ||||||
Overtones | 1825–1946 | 1813 | 1948 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchia, A.; Colasanti, I.A.; Barbaccia, F.I.; Zaratti, C.; Franchino, G.; Scarpelli, J.; Damiano, M.; Valentini, F. Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies. Appl. Sci. 2025, 15, 5355. https://doi.org/10.3390/app15105355
Macchia A, Colasanti IA, Barbaccia FI, Zaratti C, Franchino G, Scarpelli J, Damiano M, Valentini F. Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies. Applied Sciences. 2025; 15(10):5355. https://doi.org/10.3390/app15105355
Chicago/Turabian StyleMacchia, Andrea, Irene Angela Colasanti, Francesca Irene Barbaccia, Camilla Zaratti, Giuseppe Franchino, Jessica Scarpelli, Miriam Damiano, and Federica Valentini. 2025. "Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies" Applied Sciences 15, no. 10: 5355. https://doi.org/10.3390/app15105355
APA StyleMacchia, A., Colasanti, I. A., Barbaccia, F. I., Zaratti, C., Franchino, G., Scarpelli, J., Damiano, M., & Valentini, F. (2025). Preservation of Money Art: Material Degradation and Evaluation of Biopolymer Coatings as Protective Strategies. Applied Sciences, 15(10), 5355. https://doi.org/10.3390/app15105355