polymers-logo

Journal Browser

Journal Browser

Processing, Characterization and Modeling of Polymer Nanocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (30 March 2025) | Viewed by 9036

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical and Automotive Engineering, Clemson University, Clemson, SC 29631, USA
Interests: multiscale modeling and simulation of materials
Special Issues, Collections and Topics in MDPI journals
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
Interests: nanocomposites manufacturing; applications; engineering nanomaterial design; biomaterials mechanics

E-Mail Website1 Website2
Guest Editor
School of Mechanical and Automotive Engineering, Clemson University, Clemson, SC 29631, USA
Interests: scalable nanomanufacturing; advanced material processing; micro- and nanosensors; nanocomposites; nanofibers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer nanocomposites have emerged as highly versatile advanced materials, offering many application possibilities across various fields, such as advanced structural materials, packaging, electronics, sensors, energy storage, and coatings. This surge in application potential has spurred significant research efforts into the processing, characterization, and modeling of polymer nanocomposites. This Special Issue aims to gather cutting-edge research in the broad field of polymer nanocomposites, encompassing diverse topics such as the efficient and effective processing of polymers and nanocomposites, comprehensive characterization of their structural, physical, and mechanical properties, and advanced computational modeling to enhance understanding of underlying mechanisms and structure–property relationships. We welcome original research articles, reviews, and short communications that delve into these areas. In particular, we encourage interdisciplinary approaches that integrate insights from materials science, physics, chemistry, and engineering and studies aiming to comprehensively elucidate the processing-structure-property relationships of polymer nanocomposites. By bringing together diverse perspectives and methodologies, this Special Issue seeks to advance the state-of-the-art field of polymer nanocomposites and pave the way for future innovations and applications.

Dr. Zhaoxu Meng
Dr. Lihua Lou
Prof. Dr. Hongseok Choi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer nanocomposites
  • advanced processing
  • experimental characterization
  • computational modeling
  • processing structure–property relationship

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 2055 KiB  
Article
Synergistic Effects of Graphene Oxide and Nanocellulose on Water-Based Drilling Fluids: Improved Filtration and Shale Stabilization
by Yerlan Kanatovich Ospanov and Gulzhan Abdullaevna Kudaikulova
Polymers 2025, 17(7), 949; https://doi.org/10.3390/polym17070949 - 31 Mar 2025
Viewed by 304
Abstract
Shale formations pose significant challenges to traditional drilling fluids, including issues such as fluid invasion, cutting dispersion, and shale swelling, contributing to wellbore instability. While oil-based drilling fluids (OBM) effectively address these challenges, concerns over their environmental impact and cost limit their widespread [...] Read more.
Shale formations pose significant challenges to traditional drilling fluids, including issues such as fluid invasion, cutting dispersion, and shale swelling, contributing to wellbore instability. While oil-based drilling fluids (OBM) effectively address these challenges, concerns over their environmental impact and cost limit their widespread adoption. Nanoparticles (NPs) have emerged as a promising frontier for enhancing the performance of water-based drilling fluids (WBDFs) in shale applications. This study examines the effectiveness of water-based drilling fluids (WBDFs) enhanced with a nanocomposite of graphene oxide (GO) and nanocellulose (NC) compared to that of conventional WBDFs. The combination of GO and NC is chosen for its synergistic effects: GO provides enhanced mechanical strength and barrier properties, while NC serves to stabilize the dispersion and improve the compatibility with WBDF matrices. The modification with NC aims to optimize the interaction between GO and the drilling fluid components, enhancing performance in regards to shale inhibition and fluid loss control. This research involved the successful synthesis and characterization of a GO/NC nanocomposite, which underwent examination through FTIR, PSD, and SEM analyses. We also evaluated the filtration properties of water-based drilling fluids (WBDF) enhanced with a graphene oxide/nanocellulose (GO/NC) nanocomposite and compared the results to those for conventional WBDF. Filtration performance was assessed under both low-temperature, low-pressure (LTLP) and high-temperature, high-pressure (HTHP) conditions, and contact angle measurements were conducted to examine the wettability of the shale. The results demonstrated that incorporating GO/NC into the WBDF reduced the filtrate volume by 17% under LTLP conditions and by 23.75% under HTHP conditions, indicating a significant improvement in filtration control. Furthermore, the GO/NC-WBDF increased the hydrophobicity of the shale, as shown by a 61° increase in the contact angle. These findings suggest that GO/NC enhances the performance of WBDF, particularly in unconventional shale formations, by reducing fluid loss and improving wellbore stability. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Graphical abstract

17 pages, 6327 KiB  
Article
Enhanced Mechanical and Acoustic Properties of Basalt Fiber/Polyurethane Composites by Silane Coupling Agents
by Mengchen Ge, Xiaodong Li, Fei Han, Xing Su, Hao Jiang, Youhao Liu, Yangwei Wang and Meishuai Zou
Polymers 2025, 17(1), 61; https://doi.org/10.3390/polym17010061 - 29 Dec 2024
Cited by 1 | Viewed by 1209
Abstract
Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in [...] Read more.
Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope. Further measurements were performed on an electronic universal testing machine for characterizing the mechanical properties of composites. Moreover, the loss factor and transmission loss of composite materials were obtained from dynamic thermomechanical analysis and acoustic impedance tube, respectively. The suitable concentrations in the modification of basalt fibers were established at 1% for KH550 and 1.5% for KH560. The best overall performance was obtained in KH550-BMF/PUE group, as the properties increased by 31% in tensile strength, 37% in elongation at break, and 21% in acoustic insulation. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

15 pages, 3383 KiB  
Article
Improvement of Mechanical and Acoustic Characteristics of Halloysite Nanotube-Reinforced Polyurethane Elastomer Composites and Their Applications
by Mengchen Ge, Xiaodong Li, Xing Su, Hao Jiang, Yangwei Wang, Fei Han and Meishuai Zou
Polymers 2024, 16(21), 3025; https://doi.org/10.3390/polym16213025 - 28 Oct 2024
Cited by 1 | Viewed by 1192
Abstract
Polyurethane incorporated with nanofillers such as carbon nanotubes, basalt fibers, and clay nanoparticles has presented remarkable potential for improving the performance of the polymeric composites. In this study, the halloysite nanofiller-reinforced polyurethane elastomer composites were prepared via the semi-prepolymer method. The impact of [...] Read more.
Polyurethane incorporated with nanofillers such as carbon nanotubes, basalt fibers, and clay nanoparticles has presented remarkable potential for improving the performance of the polymeric composites. In this study, the halloysite nanofiller-reinforced polyurethane elastomer composites were prepared via the semi-prepolymer method. The impact of different halloysites (halloysite nanotubes and halloysite nanoplates) in polyurethane composites was investigated. Scanning electron microscopy, X-ray diffraction, infrared spectroscopy, electronic universal tensile testing, and acoustic impedance tube testing were employed to characterize the morphology, composition, phase separation, mechanical properties, and sound insulation of the samples. The composite fabricated with 0.5 wt% of halloysite nanotubes introduced during quasi-prepolymer preparation exhibited the highest tensile strength (22.92 ± 0.84 MPa) and elongation at break (576.67 ± 17.99%) among all the prepared samples. Also, the incorporation of 2 wt% halloysite nanotubes into the polyurethane matrix resulted in the most significant overall improvements, particularly in terms of tensile strength (~44%), elongation at break (~40%), and sound insulation (~25%) within the low-frequency range of 50 to 1600 Hz. The attainment of these impressive mechanical and acoustic characteristics could be attributed to the unique lumen structure of the halloysite nanotubes, good dispersion of the halloysites in the polyurethane, and the interfacial bonding between the matrix and halloysite fillers. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

19 pages, 6142 KiB  
Article
Optimizing Mechanical and Electrical Performance of SWCNTs/Fe3O4 Epoxy Nanocomposites: The Role of Filler Concentration and Alignment
by Zulfiqar Ali, Saba Yaqoob, Alessandro Lo Schiavo and Alberto D’Amore
Polymers 2024, 16(18), 2595; https://doi.org/10.3390/polym16182595 - 13 Sep 2024
Viewed by 996
Abstract
The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges [...] Read more.
The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges like orientation, uniform dispersion, and agglomeration must be addressed to realize their full potential. This study focuses on developing SWCNTs/Fe3O4 epoxy composites by keeping the SWCNT concentration constant at 0.03 Vol.% and varying with Fe3O4 concentrations at 0.1, 0.5, and 1 Vol.% for two different configurations: randomly orientated (R-) and magnetic field-assisted horizontally aligned (A-) SWCNTs/Fe3O4 epoxy composites, and investigates the effects of filler concentration, dispersion, and magnetic alignment on the mechanical and electrical properties. The research reveals that both composite configurations achieve an optimal mechanical performance at 0.5 Vol.% Fe3O4, while A- SWCNTs/Fe3O4 epoxy composites outperformed at all concentrations. However, at 1 Vol.% Fe3O4, mechanical properties decline due to nanoparticle agglomeration, which disrupts stress distribution. In contrast, electrical conductivity peaks at 1 Vol.% Fe3O4, indicating that the higher density of Fe3O4 nanoparticles enhances the conductive network despite the mechanical losses. This study highlights the need for precise control over filler content and alignment to optimize mechanical strength and electrical conductivity in SWCNTs/Fe3O4 epoxy nanocomposites. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

16 pages, 6556 KiB  
Article
Unveiling the Nanoconfinement Effect on Crystallization of Semicrystalline Polymers Using Coarse-Grained Molecular Dynamics Simulations
by Ji Yang, Yitong Chen, Zhangke Yang, Linjiale Dai, Hongseok Choi and Zhaoxu Meng
Polymers 2024, 16(8), 1155; https://doi.org/10.3390/polym16081155 - 19 Apr 2024
Cited by 2 | Viewed by 1687
Abstract
Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully [...] Read more.
Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer—polyvinyl alcohol (PVA)—under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2956 KiB  
Review
Advances in Molecular Dynamics-Based Characterization of Water and Ion Adsorption and Transport in C-S-H Gels
by Xinjie Li, Yingfang Fan, Chang Wu and Lei Wang
Polymers 2024, 16(23), 3285; https://doi.org/10.3390/polym16233285 - 25 Nov 2024
Viewed by 1114
Abstract
Cementitious material durability is affected by the transport and adsorption of water molecules and ions in the nanopore channels of cement hydration products. Hydrated calcium silicate (C-S-H) accounts for about 70% of the hydration product. It determines the mechanical properties of cementitious materials [...] Read more.
Cementitious material durability is affected by the transport and adsorption of water molecules and ions in the nanopore channels of cement hydration products. Hydrated calcium silicate (C-S-H) accounts for about 70% of the hydration product. It determines the mechanical properties of cementitious materials and their internal transport properties. The molecular dynamics method provides a complementary understanding of experimental and theoretical results. It can further reveal water molecules and ions’ adsorption and transport mechanisms in C-S-H gel pores. This review article provides an overview of the current state of research on the structure of C-S-H gels and the adsorption and transport properties of water molecules and ions within C-S-H gels, as studied through molecular dynamics simulations. This paper summarizes the results of the molecular dynamics-based adsorption transport properties of water molecules and ions in C-S-H gels. The deficiencies in the current study were analyzed, and the fundamental problems to be solved and further research directions were clarified to provide scientific references for revealing the structural properties of C-S-H gels using molecular dynamics. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

33 pages, 7096 KiB  
Review
Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials
by Mieke Buntinx, Chris Vanheusden and Dries Hermans
Polymers 2024, 16(21), 3061; https://doi.org/10.3390/polym16213061 - 30 Oct 2024
Cited by 1 | Viewed by 1988
Abstract
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand [...] Read more.
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications. In parallel, zinc oxide (ZnO) nanoparticles (NPs) have gained attention for their antimicrobial properties and ability to enhance the mechanical and barrier properties of (bio)polymers. This review aims to provide a comprehensive introduction to the research on PHA/ZnO nanocomposites. It starts with the importance and current challenges of food packaging, followed by a discussion on the opportunities of bioplastics and PHAs. Next, the synthesis, properties, and application areas of ZnO NPs are discussed to introduce their potential use in (bio)plastic food packaging. Early research on PHA/ZnO nanocomposites has focused on solvent-assisted production methods, whereas novel technologies can offer additional possibilities with regard to industrial upscaling, safer or cheaper processing, or more specific incorporation of ZnO NPs in the matrix or on the surface of PHA films or fibers. Here, the use of solvent casting, melt processing, electrospinning, centrifugal fiber spinning, miniemulsion encapsulation, and ultrasonic spray coating to produce PHA/ZnO nanocomposites is explained. Finally, an overview is given of the reported effects of ZnO NP incorporation on thermal, mechanical, gas barrier, UV barrier, and antimicrobial properties in ZnO nanocomposites based on poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). We conclude that the functionality of PHA materials can be improved by optimizing the ZnO incorporation process and the complex interplay between intrinsic ZnO NP properties, dispersion quality, matrix–filler interactions, and crystallinity. Further research regarding the antimicrobial efficiency and potential migration of ZnO NPs in food (simulants) and the End-of-Life will determine the market potential of PHA/ZnO nanocomposites as active packaging material. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop