Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = hydrophobic hydration process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2498 KB  
Article
Evaluation of Modified Ceramic Waste Incorporating Nanosilica Addition for Concrete Utilization
by Nevin Karamahmut Mermer
Minerals 2026, 16(1), 46; https://doi.org/10.3390/min16010046 - 31 Dec 2025
Viewed by 238
Abstract
The construction sector is progressively prioritizing environmental norms owing to its substantial role in carbon emissions from clinker manufacture. Industrial waste materials are increasingly used as alternative constituents in cement-based systems, garnering interest as a sustainable strategy. Ceramic waste powder (CWP), produced in [...] Read more.
The construction sector is progressively prioritizing environmental norms owing to its substantial role in carbon emissions from clinker manufacture. Industrial waste materials are increasingly used as alternative constituents in cement-based systems, garnering interest as a sustainable strategy. Ceramic waste powder (CWP), produced in substantial quantities with enduring properties, offers a viable alternative. Nonetheless, its elevated water absorption presents issues, requiring modification procedures such as hydrophobization and the use of nanosilica to enhance performance. This study assessed CWP in both raw and modified forms (ground and hydrophobized) as a partial aggregate replacement in concrete. A silane-derived chemical was employed for hydrophobization, with varying amounts of nanosilica. Recent mortar testing encompassed setting time, flow, and density. Durability was evaluated using capillary water absorption, and flexural and compressive strengths were quantified at 2, 7, and 28 days. Mineralogical and microstructural investigations were conducted utilizing XRD and FTIR to monitor hydration phases and reaction processes. Results indicated that unmodified CWP containing up to 1% (wt) nanosilica enhanced mechanical strength; however, elevated nanosilica concentrations diminished early strength. Hydrophobized CWP samples demonstrated improved early strength with nanosilica levels up to 0.5% (wt), but strength diminished at elevated concentrations. Microstructural analysis confirmed reduced portlandite levels and increased C–S–H production, thereby validating the progress of hydration. The regulated and altered application of CWP with nanosilica can improve mechanical performance and durability while promoting ecological sustainability in cement-based systems. Full article
(This article belongs to the Special Issue From Clay Minerals to Ceramics: Progress and Challenges)
Show Figures

Graphical abstract

36 pages, 13927 KB  
Review
From Conventional to Next-Generation Strategies: Recent Advances in Polymeric Micelle Preparation for Drug Delivery
by Suhyeon Cho, Morteza Rasoulianboroujeni, Rae Hyung Kang and Glen S. Kwon
Pharmaceutics 2025, 17(10), 1360; https://doi.org/10.3390/pharmaceutics17101360 - 21 Oct 2025
Cited by 5 | Viewed by 2911
Abstract
Polymeric micelles are promising nanocarriers for hydrophobic drug delivery, offering enhanced solubility, circulation time, and targeted release. This review presents a comprehensive evaluation of micelle preparation strategies, spanning conventional methods such as direct dissolution, dialysis, and thin-film hydration to emerging techniques including microfluidics, [...] Read more.
Polymeric micelles are promising nanocarriers for hydrophobic drug delivery, offering enhanced solubility, circulation time, and targeted release. This review presents a comprehensive evaluation of micelle preparation strategies, spanning conventional methods such as direct dissolution, dialysis, and thin-film hydration to emerging techniques including microfluidics, supercritical fluids, stimuli-responsive systems, and PEG-assisted assembly. Each method is compared in terms of scalability, reproducibility, solvent use, and regulatory compatibility. Among them, PEG-assisted methods show particular promise due to their simplicity and industrial readiness. We also explore the impact of fabrication strategy on drug loading, stability, and therapeutic efficacy across applications in cancer, infection, and inflammation. Finally, the review discusses key challenges in storage, manufacturing, and regulation, and highlights potential solutions through Quality-by-Design and scalable process integration. These insights provide guidance for the rational development of clinically translatable micelle-based drug delivery systems. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Cited by 2 | Viewed by 1716
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

16 pages, 2790 KB  
Article
Mechanism Insights in Freeze–Thaw Process Impacting Cold Denaturation of Gluten Proteins During Frozen Storage
by Yang Li, Yilin Sun, Shuya Chen, Mingfei Li, Xiaowei Zhang and Yujie Lu
Foods 2025, 14(17), 3103; https://doi.org/10.3390/foods14173103 - 5 Sep 2025
Viewed by 1405
Abstract
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration [...] Read more.
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration properties and conformational changes in gluten proteins stored at −73 °C and −23 °C, with or without freeze–thaw cycling. Compared to continuous storage, freeze–thaw cycles reduced water-holding capacity by 9.1–12.2% and increased oil-holding capacity by 5.3–10.3%, indicating aggravated structural damage. Ultra-low temperature storage (−73 °C) suppressed ice crystal growth, preserved hydration, and limited hydrophobic residue exposure. Spectroscopic analyses revealed a temperature-dependent shift from α-helices to β-sheets and β-turns, which was accelerated by freeze–thaw cycles. Enhanced hydrophobic interactions and tryptophan exposure further indicated destabilization. Molecular dynamics simulations showed that increased hydrogen bonding between proteins and water contributed to unfolding at low temperatures, while temperature fluctuations intensified denaturation through repeated hydrogen bond breakage and reformation. These results underscore the critical role of thermal instability in cold denaturation and offer mechanistic insights for improving cryoprotection strategies in frozen food systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

23 pages, 3106 KB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 860
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

20 pages, 1490 KB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Cited by 39 | Viewed by 11750
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

18 pages, 11860 KB  
Article
Composite Treatment of Mortar Through Nano-Ion-Based Capillary Crystalline and Silane Hydrophobic Processing to Enhance Its Corrosion Resistance in the Cl-Contained Environment
by Quan Hua, Changyun Wu, Yangshun Zhu, Haoyu Wang, Guowei Wang, Shuguang Zhang and Dan Song
Coatings 2025, 15(3), 278; https://doi.org/10.3390/coatings15030278 - 26 Feb 2025
Cited by 1 | Viewed by 1268
Abstract
The inherent porous structure of concrete enables the penetration of water and Cl ions through its pores, which eventually leads to rebar corrosion within the concrete. Consequently, the densification and impermeability of concrete protective layers play a critical role in the durability [...] Read more.
The inherent porous structure of concrete enables the penetration of water and Cl ions through its pores, which eventually leads to rebar corrosion within the concrete. Consequently, the densification and impermeability of concrete protective layers play a critical role in the durability of reinforced concrete structures. This study proposes a composite anti-corrosion treatment for mortar protective layers by integrating nano-ion capillary crystalline with silane hydrophobic processing. Targeting existing mortar samples, a series of experiments were conducted, utilizing scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry-thermogravimetry (DSC-TG), X-ray computed tomography (X-CT), contact angle measurements, permeability tests, and electrochemical tests. These experiments systematically evaluated the effects of composite anti-corrosion treatment on the microstructure of hydration products, pore characteristics, surface hydrophobicity, impermeability, and the overall corrosion resistance of mortar-rebar samples in a Cl-contained environment. The results reveal that nano-ion capillary crystalline materials react with free calcium ions in the mortar to produce secondary hydration products, effectively filling micro-pores, densifying the pore structure and inhibiting the invasion of Cl ions. The combination of capillary crystalline and silane hydrophobic processing synergistically enhances surface hydrophobicity and impermeability, preventing the ingress of corrosive agents, such as Cl ions, and significantly improving the anti-corrosion performance of mortar in a Cl-contained environment. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

21 pages, 2266 KB  
Review
Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase
by Gregorio Polo, Francesca Lionetto, Maria Elena Giordano and Maria Giulia Lionetto
Int. J. Mol. Sci. 2024, 25(17), 9716; https://doi.org/10.3390/ijms25179716 - 8 Sep 2024
Cited by 11 | Viewed by 4192
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid–base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 6882 KB  
Article
Experimental Study on Combined Microwave–Magnetic Separation–Flotation Coal Desulfurization
by Guangming Wang, Zhijun Ma, Zhijing Zhou, Yunsheng Zheng and Liang Cheng
Molecules 2024, 29(16), 3729; https://doi.org/10.3390/molecules29163729 - 6 Aug 2024
Cited by 4 | Viewed by 1705
Abstract
In order to reduce the content of sulfur and ash in coal, improve the desulfurization and deashing rates, a combined experiment method of microwave magnetic separation-flotation was proposed for raw coal. The desulfurization and deashing rates of three experiment methods, namely, single magnetic [...] Read more.
In order to reduce the content of sulfur and ash in coal, improve the desulfurization and deashing rates, a combined experiment method of microwave magnetic separation-flotation was proposed for raw coal. The desulfurization and deashing rates of three experiment methods, namely, single magnetic separation, microwave magnetic separation, and microwave magnetic separation–flotation, were compared. Taking the microwave magnetic separation–flotation experiment method as the main line, the effects of the microwave irradiation time, microwave power, grinding time, magnetic field intensity, plate seam width, foaming agent dosage, collector dosage, and inhibitor dosage on desulfurization and deashing were discussed, and the mechanism of microwave irradiation on magnetic separation and flotation was revealed. The results show that under the conditions of a microwave irradiation time of 60 s, a microwave power of 80% of the rated power (800 W), a grinding time of 8 min, a plate seam width (the plate seam width of a magnetic separator sorting box) of 1 mm, a magnetic field intensity of 2.32 T, a foaming agent dosage of 90 g/t, a collector dosage of 2125 g/t, and an inhibitor dosage of 1500 g/t, the desulfurization and deashing effect is the best. The desulphurization rate is 76.51%, the sulfur removal rate of pyrite is 96.50%, and the deashing rate is 61.91%. Microwaves have the characteristic of selective heating, and the thermal conductivity of organic matter in coal is greater than that of mineral. Microwave irradiation can improve the reactivity of pyrite in coal, pyrolyze pyrite into high-magnetic pyrite, improve the magnetic properties, and improve the magnetic separation effect. Therefore, microwave irradiation plays a role in promoting magnetic separation. Through microwave irradiation, the positive and negative charges in coal molecules constantly vibrate and create friction under the action of an electric field force, and the thermal action generated by this vibration and friction process affects the structural changes in oxygen-containing functional groups in coal. With the increase in the irradiation time and power, the hydrophilic functional groups of –OH and –COOH decrease and the hydrophilicity decreases. Microwave heating evaporates the water in the pores of coal samples and weakens surface hydration. At the same time, microwave irradiation destroys the structure of coal and impurity minerals, produces cracks at the junction, increases the surface area of coal to a certain extent, enhances the hydrophobicity, and then improves the effect of flotation desulfurization and deashing. Therefore, after the microwave irradiation of raw coal, the magnetic separation effect is enhanced, and the flotation desulfurization effect is also enhanced. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

22 pages, 5911 KB  
Article
Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer
by Rita Cerqueira, Cátia Domingues, Francisco Veiga, Ivana Jarak and Ana Figueiras
Int. J. Mol. Sci. 2024, 25(14), 7577; https://doi.org/10.3390/ijms25147577 - 10 Jul 2024
Cited by 8 | Viewed by 3123
Abstract
Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer [...] Read more.
Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer treatment with a staggering number of molecular targets involved in tumor initiation, promotion, and progression. Despite being promising, its therapeutic potential is hindered due to its hydrophobic nature. Hence, the ongoing development of optimal delivery strategies based on nanotechnology, such as polymeric micelles (PMs), to overcome issues in CUR solubilization and delivery to tumor cells. In this sense, this study aimed to optimize the development and stability of CUR-loaded P123:F127:TPGS PMs (PFT:CUR) based on the thin-film approach and evaluate their therapeutic potential in CRC. Overall, the results revealed that the solubility of CUR was improved when room temperature was used to hydrate the film. The PFT–CUR hydrated at room temperature presents an average hydrodynamic diameter of 15.9 ± 0.3 nm with a polydispersity index (PDI) of 0.251 ± 0.103 and a zeta potential of −1.5 ± 1.9 mV, and a 35.083 ± 1.144 encapsulation efficiency (EE%) and 3.217 ± 0.091 drug loading (DL%) were observed. To ensure the stability of the optimized PFT–CUR nanosystems, different lyophilization protocols were tested, the use of 1% of glycine (GLY) being the most promising protocol. Regarding the critical micellar concentration (CMC), it was shown that the cryoprotectant and the lyophilization process could impact it, with an increase from 0.064 mg/mL to 0.119 mg/mL. In vitro results showed greater cytotoxic effects when CUR was encapsulated compared to its free form, yet further analysis revealed the heightened cytotoxicity could be attributed to the system itself. Despite challenges, the developed CUR-loaded PM shows potential as an effective therapeutic agent for CRC. Nonetheless, the system must undergo refinements to enhance drug entrapment as well as improve overall stability. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Application of Polymeric Micelles)
Show Figures

Figure 1

17 pages, 5124 KB  
Article
In Situ Hydrophobization of Lithium Aluminate Particles for Flotations by Dry Grinding in the Presence of Punicines
by Frédéric Steiner, Ali Zgheib, Maximilian Hans Fischer, Lukas Büttner, Andreas Schmidt and Sandra Breitung-Faes
Minerals 2024, 14(7), 650; https://doi.org/10.3390/min14070650 - 25 Jun 2024
Cited by 2 | Viewed by 2577
Abstract
The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been [...] Read more.
The engineered artificial mineral (EnAM) lithium aluminate (LiAlO2) is a promising candidate for the recycling of lithium from slags, which can originate from the reprocessing of batteries, for example. Derivatives of the natural product Punicine (1-(2′,5′-dihydroxyphenyl)-pyridinium) from Punica granatum have been proven to be effective switchable collectors for the flotation of this mineral as they react to light. In the present study, three Punicines were added to a planetary ball mill before grinding LiAlO2 to particle sizes suitable for flotation. We investigated the influence of Punicine and two derivatives with C10 and C17 side chains on the grinding results at different grinding times and conditions as well as on the yields in flotations. SEM images of the particles, IR and ICP–OES measurements provided insights into the Punicine–particle interactions. They showed that Punicines not only prevent the formation of hydrophilic and thus undesirable lithium aluminate hydroxide hydrate (LiAl2(OH)7 ▪ x H2O) surfaces in this process, as is unavoidable in aqueous flotation without this pretreatment, they also prevent the undesired release of lithium cations into the aqueous phase. Due to considerable hydrophobization of the particle surface of LiAlO2, nearly quantitative recovery rates of this engineered artificial mineral are achieved using the process described here. Full article
Show Figures

Figure 1

25 pages, 7365 KB  
Article
Different Drug Mobilities in Hydrophobic Cavities of Host–Guest Complexes between β-Cyclodextrin and 5-Fluorouracil at Different Stoichiometries: A Molecular Dynamics Study in Water
by Giuseppina Raffaini, Stefano Elli, Michelina Catauro and Antonio D’Angelo
Int. J. Mol. Sci. 2024, 25(11), 5888; https://doi.org/10.3390/ijms25115888 - 28 May 2024
Cited by 13 | Viewed by 1981
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides able to form noncovalent water-soluble complexes useful in many different applications for the solubilization, delivery, and greater bioavailability of hydrophobic drugs. The complexation of 5-fluorouracil (5-FU) with natural or synthetic cyclodextrins permits the solubilization of this poorly soluble [...] Read more.
Cyclodextrins (CDs) are cyclic oligosaccharides able to form noncovalent water-soluble complexes useful in many different applications for the solubilization, delivery, and greater bioavailability of hydrophobic drugs. The complexation of 5-fluorouracil (5-FU) with natural or synthetic cyclodextrins permits the solubilization of this poorly soluble anticancer drug. In this theoretical work, the complexes between β-CD and 5-FU are investigated using molecular mechanics (MM) and molecular dynamics (MD) simulations in water. The inclusion complexes are formed thanks to the favorable intermolecular interactions between β-CD and 5-FU. Both 1:1 and 1:2 β-CD/5-FU stoichiometries are investigated, providing insight into their interaction geometries and stability over time in water. In the 1:2 β-CD/5-FU complexes, the intermolecular interactions affect the drug’s mobility, suggesting a two-step release mechanism: a fast release for the more exposed and hydrated drug molecule, with greater freedom of movement near the β-CD rims, and a slow one for the less-hydrated and well-encapsulated and confined drug. MD simulations study the intermolecular interactions between drugs and specific carriers at the atomistic level, suggesting a possible release mechanism and highlighting the role of the impact of the drug concentration on the kinetics process in water. A comparison with experimental data in the literature provides further insights. Full article
Show Figures

Graphical abstract

15 pages, 5611 KB  
Article
Investigation of Effect of Proposed Two-Stage Foam Injection Method and Modified Additive on Workability of Foam Concrete
by Rauan Lukpanov, Duman Dyussembinov, Aliya Altynbekova, Serik Yenkebayev and Adiya Zhumagulova
Materials 2024, 17(9), 2024; https://doi.org/10.3390/ma17092024 - 26 Apr 2024
Cited by 5 | Viewed by 1338
Abstract
This article presents the results of an investigation of the proposed method and the influence of a modified additive on foam concrete properties. X-ray diffraction analysis showed that the modified additive has a variable mineralogical composition, and the joint use of the components [...] Read more.
This article presents the results of an investigation of the proposed method and the influence of a modified additive on foam concrete properties. X-ray diffraction analysis showed that the modified additive has a variable mineralogical composition, and the joint use of the components contributes to the synergistic effect, improving the processes of cement hydration. Microscopy of the foam concrete samples showed the presence of microcracks and micropores in samples both with and without the additive. However, the use of the additive significantly reduced their number and size, which indicates an improvement in the structure of the material. The strength values showed that the samples with the additive have high strength. In particular, the strength values of samples of type 3 at different stages of curing exceed those of samples of type 1 by 1.32–1.51 times and samples of type 2 by 1.07–1.10 times. The obtained strength values are 2.82–3.21 MPa for type 1, 3.64–4.04 MPa for type 2, and 4.39–4.84 MPa for type 3, which corresponds to grade D600. The evaluation of water absorption also confirmed the advantages of the proposed method and the additive, significantly reducing the water absorption of the samples and increasing their hydrophobicity. The obtained values of water absorption are 13.8–16.6% for type 1, 13.7–16.1% for type 2, and 9.5–11.2% for type 3. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 3676 KB  
Article
Studying the API Distribution of Controlled Release Formulations Produced via Continuous Twin-Screw Wet Granulation: Influence of Matrix Former, Filler and Process Parameters
by Phaedra Denduyver, Chris Vervaet and Valérie Vanhoorne
Pharmaceutics 2024, 16(3), 341; https://doi.org/10.3390/pharmaceutics16030341 - 28 Feb 2024
Cited by 2 | Viewed by 2715
Abstract
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content [...] Read more.
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid. Full article
Show Figures

Figure 1

17 pages, 14794 KB  
Article
Zwitterionic Tröger’s Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance
by Meng Wang, Tingting Huang, Meng Shan, Mei Sun, Shasha Liu and Hai Tang
Molecules 2024, 29(5), 1001; https://doi.org/10.3390/molecules29051001 - 25 Feb 2024
Cited by 2 | Viewed by 2471
Abstract
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an [...] Read more.
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)—zwitterionic Tröger’s base (ZTB)—was synthesized by quaternizing Tröger’s base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane’s proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil–water separation, achieving a maximum flux of 1897.63 LMH bar−1 and an oil rejection rate as high as 99% in the oil–water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

Back to TopTop