Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = hydrogeological investigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 (registering DOI) - 1 Aug 2025
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 289
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 2004 KiB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 248
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 6037 KiB  
Article
Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania
by Nicolae-Leontin Petruța, Ioana Monica Sur, Tudor Andrei Rusu, Timea Gabor and Tiberiu Rusu
Sustainability 2025, 17(14), 6530; https://doi.org/10.3390/su17146530 - 17 Jul 2025
Viewed by 451
Abstract
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality [...] Read more.
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality in rural wells in the Ceanu Mare commune, Cluj County, Romania—a representative area of the Northern Transylvania Basin, characterized by diverse geological structures, intensive agricultural activities, and incomplete public water infrastructure. This study combines detailed hydrochemical analyses, household-level studies, and geological context to identify and quantify key factors influencing nitrate and microbial contamination in rural wells, providing a comprehensive perspective on water quality challenges in the central part of Romania. This study adopts a multidisciplinary approach, integrating detailed geotechnical investigations conducted through four strategically located boreholes. These are complemented by extensive hydrogeological and lithological characterization, as well as rigorous chemical and microbiological analyses of nearby wells. The results reveal persistently elevated concentrations of NO3 and NO2, commonly associated with inadequate livestock waste management and the proximity of manure storage areas. Microbiological contamination was also frequent. In this study, the NO3 levels in well water ranged from 39.7 to 48 mg/L, reaching up to 96% of the EU/WHO threshold (50 mg/L), while the NO2 concentrations varied from 0.50 to 0.69 mg/L, exceeding the legal limit (0.5 mg/L) in 87% of the sampled wells. Ammonium (NH4+) was detected (0.25–0.34 mg/L) in all the wells, below the maximum allowed limit (0.5 mg/L) but indicative of ongoing organic pollution. All the well water samples were non-compliant for microbiological parameters, with E. coli detected in 100% of cases (5–13 CFU/100 mL). The regional clay–marl substrate offers only limited natural protection against pollutant infiltration, primarily due to lithological heterogeneity and discontinuities observed within the clay–marl layers in the study area. This research delivers a replicable model for rural groundwater assessment and addresses a critical gap in regional and European water safety studies. It also provides actionable recommendations for sustainable groundwater management, infrastructure development, and community risk reduction in line with EU water directives. Full article
Show Figures

Figure 1

19 pages, 12075 KiB  
Article
Integrating Gravimetry and Spatial Analysis for Structural and Hydrogeological Characterization of the Northeast Tadla Plain Aquifer Complex, Morocco
by Salahddine Didi, Said El Boute, Soufiane Hajaj, Abdessamad Hilali, Amroumoussa Benmoussa, Said Bouhachm, Salah Lamine, Abdessamad Najine, Amina Wafik and Halima Soussi
Geographies 2025, 5(3), 35; https://doi.org/10.3390/geographies5030035 - 16 Jul 2025
Viewed by 306
Abstract
This study was conducted in the northeast of the Tadla plain, within the Beni Mellal-Khenifra region of Morocco. The primary objective is to elucidate the geometric and hydrogeological characteristics of this aquifer by analyzing and interpreting data from deep boreholes as well as [...] Read more.
This study was conducted in the northeast of the Tadla plain, within the Beni Mellal-Khenifra region of Morocco. The primary objective is to elucidate the geometric and hydrogeological characteristics of this aquifer by analyzing and interpreting data from deep boreholes as well as gravimetric and electrical measurements using GIS analysis. First, the regional gradient was established. Then, the initial data were extracted. Subsequently, based on the extracted data, a gravity map was created. The investigation of the Bouguer anomaly’s gravity map exposes the presence of a regional gradient, with values varying from −100 mGal in the South to −30 mGal in the North of the area. These Bouguer anomalies often correlate with exposed basement rock areas and variations in the thickness of sedimentary layers across the study area. The analysis of existing electrical survey and deep drilling data confirms the results of the gravimetry survey after applying different techniques such as horizontal gradient and upward extension on the gravimetric map. The findings enabled us to create a structural map highlighting the fault systems responsible for shaping the study area’s structure. The elaborated structural map serves as an indispensable geotectonic reference, facilitating the delineation of subsurface heterogeneities and providing a robust foundation for further hydrogeological assessments in the Tadla Plain. Full article
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 524
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

16 pages, 5939 KiB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 385
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 7146 KiB  
Article
Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes
by Muhammad Zakir Afridi, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Shoaib Qamar and Schradh Saenton
Sustainability 2025, 17(12), 5560; https://doi.org/10.3390/su17125560 - 17 Jun 2025
Viewed by 1695
Abstract
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas [...] Read more.
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas in Chiang Mai and Lamphun provinces. This study employed hydrogeological investigations, hydrometeorological data analyses, stable isotopic analysis (δ18O and δ2H), and groundwater flow modeling using a 3D groundwater flow model (MODFLOW) to quantify groundwater recharge and delineate important groundwater recharge zones within the basin. The results showed that floodplain deposits exhibited the highest recharge rate, 104.4 mm/y, due to their proximity to rivers and high infiltration capacity. In contrast, younger terrain deposits, covering the largest area of 1314 km2, contributed the most to total recharge volume with an average recharge rate of 99.8 mm/y. Seven significant recharge zones within the basin, where annual recharge rates exceeded 105 mm/y (average recharge of the entire basin), were also delineated. Zone 4, covering parts of densely populated Muaeng Lamphun, Ban Thi, and Saraphi districts, had the largest area of 330 km2 and a recharge rate of 130.2 mm/y. Zone 6, encompassing Wiang Nong Long, Bai Hong, and Pa Sang districts, exhibited the highest recharge rate of 134.6 mm/y but covered a smaller area of 67 km2. Stable isotopic data verified that recent precipitation predominantly recharged shallow groundwater, with minimal evaporation or isotopic exchange. The basin-wide average recharge rate was 104 mm/y, reflecting the combined influence of geology, permeability, and spatial distribution. These findings provide critical insights for sustainable groundwater management in the region, particularly in the context of climate change and increasing water demand. Full article
Show Figures

Figure 1

22 pages, 7345 KiB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Viewed by 561
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

34 pages, 6364 KiB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Viewed by 1485
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Inversion of Hydrogeological Parameters of Polluted Sites Based on Coupled Hydrothermal Salt-Tracer Tests
by Junwei Yang, Changsheng Chen, Guojiao Huang, Jintao Huang and Zhou Chen
Water 2025, 17(11), 1607; https://doi.org/10.3390/w17111607 - 26 May 2025
Viewed by 403
Abstract
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for [...] Read more.
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for the acquisition of pollutant transport and transformation data, which incorporated three-dimensional multifield coupling, alongside a numerical model that also accounted for multiphysical field interactions. The numerical simulations employed Darcy’s law, the heat conduction equation, and convective–dispersive equations to analyze the seepage field, heat transfer, and solute transport processes, respectively. The findings from both physical and numerical tests indicate that variations in groundwater temperature and solute concentration significantly influence solute transport dynamics. Specifically, an increase in groundwater temperature correlates with an accelerated migration rate of sodium chloride (NaCl) solute, resulting in a reduced time for the solute to achieve equivalent concentrations in observation wells. Conversely, when the concentration of NaCl in groundwater rises, the temperature of the groundwater also increases when the solute reaches the same concentration in the observation wells. This phenomenon can be attributed to the decrease in the specific heat capacity of groundwater with higher solute concentrations. Moreover, as the concentration of sodium chloride in groundwater increases, the rate of temperature elevation in the groundwater accelerates due to a decrease in specific heat capacity associated with higher solute concentrations, thereby requiring less thermal energy for the groundwater to attain the same temperature. The results further reveal that the hydraulic conductivity of the target aquifer, specifically the pulverized clay layer, ranges from 6.72 to 8.52 × 10−6 m/s, with an effective thermal conductivity of 2.2 W/(m·K), a longitudinal dispersion of 0.554 m, and a transverse dispersion of 0.05 m. Full article
Show Figures

Figure 1

23 pages, 5192 KiB  
Article
Different Sensitivities of Earthquake-Induced Water Level Responses and the Influencing Factors in Fault Zones: Insights from the Dachuan-Shuangshi Fault
by Ju Zhang, Hongbiao Gu, Deyang Zhao, Xuelian Rui, Xiaoming Zhang and Xiansi Huang
Water 2025, 17(11), 1568; https://doi.org/10.3390/w17111568 - 23 May 2025
Viewed by 440
Abstract
The earthquake-induced water level responses in the fault zone may be distinctly different, even when the underground wells are very close. How to qualitatively and quantitatively analyze the differences and controlling factors of the groundwater response to earthquakes in the fracture zone is [...] Read more.
The earthquake-induced water level responses in the fault zone may be distinctly different, even when the underground wells are very close. How to qualitatively and quantitatively analyze the differences and controlling factors of the groundwater response to earthquakes in the fracture zone is a hot topic in seismic hydrogeology. This study utilizes three adjacent groundwater monitoring wells, located across distinct structural domains of the Dachuan-Shuangshi Fault, to systematically investigate the different sensitivities of earthquake-induced water level responses and their main influencing factors. The statistical results reveal that monitoring wells located on opposing fault blocks demonstrate higher co-seismic sensitivity compared to the well situated within the fault fracture zone. The water level co-seismic responses are governed by multiple controlling factors, rather than being dominated by individual parameters. Therefore, we employed random forest to quantitatively assess the importance of influencing factors related to hydraulic parameters, aquifer confinement, fault architecture, tidal characteristics, and barometric efficiency. The results showed that hydraulic properties and aquifer confinement are the primary factors influencing the differential sensitivity of water level co-seismic responses. In contrast, the influence of barometric efficiency on water level co-seismic responses is relatively minor. These findings provide critical insights into the understanding of the mechanism and characteristics of seismic hydrological responses in fault zones and provide support for optimizing the placement of groundwater monitoring in seismotectonic environments. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

20 pages, 6761 KiB  
Article
Spatiotemporal Analysis of Soil Moisture Variability and Precipitation Response Across Soil Texture Classes in East Kazakhstan
by Dmitry Chernykh, Roman Biryukov, Andrey Bondarovich, Lilia Lubenets, Anatoly Pavlenko, Kamilla Rakhymbek, Denis Revenko and Zheniskul Zhantassova
Land 2025, 14(6), 1136; https://doi.org/10.3390/land14061136 - 23 May 2025
Viewed by 668
Abstract
The study of the hydrological regimes of rivers in different regions of the globe has revealed the need to include the soil moisture content in flood prediction models. This paper investigates the nature of the dependence of soil moisture content on soil texture [...] Read more.
The study of the hydrological regimes of rivers in different regions of the globe has revealed the need to include the soil moisture content in flood prediction models. This paper investigates the nature of the dependence of soil moisture content on soil texture in the East Kazakhstan region. Data from ERA-5-land reanalysis, soil maps, hydrogeological maps, and the meteorological data of Kazhydromet were used. The years for analysis were selected due to their different moisture conditions. This study analyzed soil moisture within the root zone (0–28 cm depth). A JavaScript-based algorithm was developed in Google Earth Engine to analyze soil moisture and total precipitation across five Soil Texture Index categories during the growing seasons (April–September) of 2013, 2022, and 2023. Final cartographic processing and spatial distribution analysis were conducted using ESRI ArcGIS Pro 3.3. The study of soil moisture’s relationship with different soil textures in the East Kazakhstan region has revealed several key trends. The maximum values of soil moisture for each texture class change very slightly from year to year. The minimum soil moisture values fluctuate more strongly from year to year. The regression analysis demonstrates a statistically significant relationship between precipitation and soil moisture. The best performance is achieved when using a 1-day lag for 2013 and varying optimal lags for 2022 and 2023 (ranging from 1 to 3 days) during the high-precipitation period (months 6–9), with filtering applied to remove days with negligible rainfall. Full article
Show Figures

Figure 1

19 pages, 6430 KiB  
Article
Groundwater–River Water Interaction in an Urban Setting (Rome, Italy) Using a Multi-Method Approach (Hydrogeological and Radon Analyses)
by Martina Mattia, Gianmarco Mondati, Roberto Mazza, Carlo Rosa, Cristina Di Salvo and Paola Tuccimei
Water 2025, 17(10), 1555; https://doi.org/10.3390/w17101555 - 21 May 2025
Viewed by 507
Abstract
The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. [...] Read more.
The interaction of the Almone River with groundwater in the Caffarella area (Rome, Italy) was investigated using a multi-method approach based on hydrogeological and radon analyses. Eleven measurement stations were established along the river at distances of approximately 270 m from one another. Stream discharge, water physicochemical properties, and radon levels were measured from June 2024 to March 2025. The contribution of two tributaries of the Almone was evaluated, but it was found to be negligible in terms of radon contribution. Except for an average increase of 40 L/s between stations 1A and 2A, the Almone’s discharge (corrected for the streams input) was constant (around 150 L/s) in June and slightly increasing from 6A to 11A in March due to heavier rainfalls. The increased discharge between stations 1A and 2A was interpreted as groundwater overflow from the volcanic aquifer into the alluvial body and in turn into the river due to a change in geometry and volume of the volcanic aquifer. In that part of the river, radon concentration increased only in March, due to the fast transition of the groundwater from a high to a lower radon emanation unit. Radon decreased along the valley due to atmospheric evasion, as confirmed by pH growth due to CO2 degassing. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

18 pages, 5654 KiB  
Case Report
The Influence of Pre-Existing Tension Cracks on the Stability of Unsupported Temporary Excavations in Stratified Hard Clays: Case Study of Corfu Island, Northwestern Greece
by Panagiotis Pelekis, Anastasios Batilas, Spyridon Lainas and Nikolaos Depountis
Geosciences 2025, 15(5), 187; https://doi.org/10.3390/geosciences15050187 - 21 May 2025
Viewed by 448
Abstract
Slope failures in overconsolidated hard clays present significant geotechnical challenges, particularly in stratified formations prone to pre-existing discontinuities. Despite extensive research on residual shear strength and fissuring in stiff clays, the role of undetected tension cracks and their interaction with hydrogeological conditions in [...] Read more.
Slope failures in overconsolidated hard clays present significant geotechnical challenges, particularly in stratified formations prone to pre-existing discontinuities. Despite extensive research on residual shear strength and fissuring in stiff clays, the role of undetected tension cracks and their interaction with hydrogeological conditions in temporary excavations remains underexplored. This study addresses this research gap through a detailed case study of a slope failure during an unsupported residential excavation on Corfu Island, Greece. The investigation aimed to identify the failure mechanism, assess the influence of geological discontinuities and groundwater conditions, and evaluate the contribution of residual shear strength to slope stability. The methodology combined field observations, laboratory testing (including unconfined compression and ring shear tests), and numerical modelling using both finite element (FEM) and limit equilibrium (LEM) approaches. The results revealed that a nearly vertical, pre-existing fissure—acting as a tension crack—and water infiltration along the clay–sandstone interface significantly reduced the factor of safety, triggering a planar slide. Both FEM and LEM analyses indicated that critical conditions for failure were reached with a residual friction angle of 19°, inclined sandstone layers at 15–17°, and hydrostatic pressure from groundwater accumulation. This study demonstrates the compounded destabilizing effects of undetected discontinuities and water pressures in stratified hard clays and underscores the necessity of comprehensive geotechnical assessments for temporary excavations, even in seemingly stable formations. Full article
Show Figures

Figure 1

Back to TopTop