Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes
Abstract
:1. Introduction
2. Background Information
2.1. Geology
2.2. Hydrogeology
2.3. Climate and Meteorological Data
2.4. Previous Modeling Studies
2.5. Previous Recharge Assessment Studies
2.6. Application of Stable Isotopes
3. Materials and Methods
3.1. Conceptual Model
3.2. Data Collection Method
3.3. Groundwater Flow Model Setup
3.4. Model Calibration
3.5. Water Sample Collection for Stable Isotope Analysis
4. Results
4.1. Groundwater Level and Flow Direction
4.2. Groundwater Modeling and Calibration Results
4.2.1. Simulated Head
4.2.2. Groundwater Budget and Recharge Assessment
4.3. Important Recharge Zonation
4.4. Implication of Stable Isotopes on Groundwater Recharge
5. Discussion
5.1. Flow Direction and Measured Hydraulic Head
5.2. Groundwater Modeling and Calibration
5.3. Recharge Zonation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gyeltshen, S.; Tran, T.V.; Khunta, W.; Kannaujiya, S. Assessing spatiotemporal built-up dynamics in Chiang Mai city, Thailand using entropy approach. Res. Sq. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Department of Provincial Administration. Annual Report on Thai Population Statistics; Ministry of Interior: Bangkok, Thailand, 2024.
- Department of Groundwater Resources. The State of Groundwater Annual Report: Thailand Groundwater Monitoring Networks Project; Final Report; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2010.
- Department of Groundwater Resources. The State of Groundwater Annual Report: Thailand Groundwater Monitoring Networks Project; Final Report; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2013.
- Department of Groundwater Resources. The State of Groundwater Annual Report: Thailand Groundwater Monitoring Networks Project; Final Report; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2018.
- Department of Groundwater Resources. Groundwater and Environmental Development and Conservation Master Plan; Final Report; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2012.
- Beden, N.; Soydan-Oksal, N.G.; Arıman, S.; Ahmadzai, H. Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote Sensing Based Geospatial and Analytical Hierarchy Processes. Sustainability 2023, 15, 10964. [Google Scholar] [CrossRef]
- Department of Groundwater Resources. Assessment of the Chiang Mai, Upper Chao Phraya, and Mae Klong Basins; Final Report; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2012.
- Doherty, J. PEST Model-Independent Parameter Estimation User Manual, 5th ed.; Watermark Numerical Computing: Brisbane, Australia, 2005. [Google Scholar]
- Ramesh, S.; Pujari, P.R. Review on Groundwater Flow and Solute Transport Modelling in India: Recent Advances and Future Directions. J. Geol. Soc. India 2022, 98, 278–284. [Google Scholar] [CrossRef]
- Dibaj, M.; Javadi, A.A.; Akrami, M.; Ke, K.-Y.; Farmani, R.; Tan, Y.-C.; Chen, A.S. Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeol. J. 2020, 28, 2085–2103. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Strack, O.D.L. Analytical Groundwater Mechanics; Cambridge University Press: Cambridge, UK, 2017; pp. 403–422. [Google Scholar] [CrossRef]
- Doherty, J.; Hunt, R.J. Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration; U.S. Geological Survey Scientific Investigations Report 2010-5169; USGS: Reston, VA, USA, 2010.
- Macdonald, A.; Barr, S.; Miller, B.; Reynolds, P.; Rhodes, B.; Yokart, B. P–T–t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand. J. Asian Earth Sci. 2010, 37, 82–104. [Google Scholar] [CrossRef]
- Morley, C.K. Evolution from an oblique subduction back-arc mobile belt to a highly oblique collisional margin: The Cenozoic tectonic development of Thailand and eastern Myanmar. Geol. Soc. Lond. Spec. Publ. 2009, 318, 373–403. [Google Scholar] [CrossRef]
- Morley, C.K. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development. Tectonics 2009, 28, 1–30. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Roberts, N.M.; Morley, C.K.; Searle, M.P.; Whitehouse, M.J. Did Oligocene crustal thickening precede basin development in northern Thailand? A geo-chronological reassessment of Doi Inthanon and Doi Suthep. Lithos 2016, 240, 69–83. [Google Scholar] [CrossRef]
- Morley, C.K. Variations in late Cenozoic–Recent strike-slip and oblique-extensional geometries, within Indochina: The influence of pre-existing fabrics. J. Struct. Geol. 2007, 29, 36–58. [Google Scholar] [CrossRef]
- Upton, D.; Bristow, C.; Hurford, A.; Carter, A. Tertiary tectonic denudation in northwestern Thailand: Provisional results from apatite fission-track analysis. In Proceedings of the International Conference on Stratigraphy and Tectonic Evolution in Southeast Asia and the South Pacific, Bangkok, Thailand, 19–24 August 1997. [Google Scholar]
- Beckinsale, R. Granite magmatism in the tin belt of south-east Asia. In Origin of Granite Batholiths: Geochemical Evidence Based on a Meeting of the Geochemistry Group of the Mineralogical Society; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Beckinsale, R.D.; Suensilpong, S.; Nakapadungrat, S.; Walsh, J.N. Geochronology and geochemistry of granite magmatism in Thailand in relation to a plate tectonic model. J. Geol. Soc. 1979, 136, 529–537. [Google Scholar] [CrossRef]
- Hutchison, C.S. Multiple Mesozoic Sn-W-Sb granitoids of southeast Asia. Geol. Soc. Am. Mem. 1983, 159, 35–60. [Google Scholar]
- Bunopas, S. Regional stratigraphic correlation in Thailand. In Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development, Bangkok, Thailand, 17–24 November 1992. [Google Scholar]
- Asnachinda, P. Hydrogeochemistry of the Chiang Mai Basin, Northern Thailand. J. Asian Earth Sci. 1997, 15, 317–326. [Google Scholar] [CrossRef]
- Ridd, M.F.; Barber, M.J.; Crow, M.J. The Geology of Thailand; Geological Society of London: London, UK, 2011. [Google Scholar]
- Wattananikorn, K.; Beshir, J.A.; Nochaiwong, A. Gravity interpretation of Chiang Mai basin, northern Thailand: Concentrating on ban Thung Sieo area. J. Southeast Asian Earth Sci. 1995, 12, 53–64. [Google Scholar] [CrossRef]
- Wisessan, C.; Wongpornchai, P. Groundwater recharge assessment using GIS approach in Chiang Mai basin. Int. J. Sci. Res. Arch. 2023, 10, 538–549. [Google Scholar] [CrossRef]
- Taweelarp, S.; Khebchareon, M.; Saenton, S. Evaluation of Groundwater Potential and Safe Yield of Heterogeneous Unconsolidated Aquifers in Chiang Mai Basin, Northern Thailand. Water 2021, 13, 558. [Google Scholar] [CrossRef]
- Julawong, J.; Groundwater Vulnerability Assessment with DRASTIC Method and Its Application in Chiangmai Basin in Thailand. Water Resources Protection 2007. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-SZYB200702009.htm (accessed on 27 April 2025).
- Rhodes, B.P.; Conejo, R.; Benchawan, T.; Titus, S.; Lawson, R. Palaeocurrents and provenance of the Mae Rim Formation, Northern Thailand: Implications for tectonic evolution of the Chiang Mai basin. J. Geol. Soc. 2005, 162, 51–63. [Google Scholar] [CrossRef]
- Thailand Meteorological Department. Monthly Mean Rainfall in Chiang Mai (30-Year Period); Internal Report; Ministry of Digital Economy and Society: Bangkok, Thailand, 2024.
- Tatong, T. Assessment of Available Groundwater Resources in the Chiang Mai Basin, Northern Thailand. Master’s Thesis, University of Birmingham, Birmingham, UK, 2000. [Google Scholar]
- Saenton, S. Applications of Stochastic Process and Inverse Modeling Technique in Groundwater Modeling of the Chiang Mai Basin; Final Report; Thailand Research Fund: Bangkok, Thailand, 2010. [Google Scholar]
- Intrasuta, T. Groundwater potential in unconsolidated sediments in Chiang Mai Basin. In Proceedings of the First Symposium Geomorphology and Quaternary Geology of Thailand, Bangkok, Thailand, 28–29 October 1983; pp. 179–195. [Google Scholar]
- Uppasit, S. Groundwater Recharge Calculation of Chiang Mai Basin Using Water-Table Fluctuation Method. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, 2004. [Google Scholar]
- Kumar, M.D.; Singh, O.P. Virtual water in global food and water policy making: Is there a need for rethinking? Water Resour. Manag. 2005, 19, 759–789. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Yousaf, M.; Wang, S.; Nan, Z.; Ma, J.; Wang, D.; Zhang, F. Hydrochemical characteristics and water quality assessment of surface water in the northeast Tibetan Plateau of China. Water Sci. Technol. Water Supply 2018, 18, 1757–1768. [Google Scholar] [CrossRef]
- Rautio, A.; Korkka-Niemi, K. Characterization of groundwater–lake water interactions at Pyhäjärvi, a lake in SW Finland. Boreal Environ. Res. 2011, 16, 363. [Google Scholar]
- Yeh, H.-F.; Lin, H.-I.; Lee, C.-H.; Hsu, K.-C.; Wu, C.-S. Identifying seasonal groundwater recharge using environmental stable isotopes. Water 2014, 6, 2849–2861. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods 6-A16; USGS: Reston, VA, USA, 2005.
- Doherty, J. Ground water model calibration using pilot points and regularization. Groundwater 2003, 41, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Deshpande, R.; Qi, Y.; Cheng, Y.-T. Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 2010, 157, A967. [Google Scholar] [CrossRef]
Parameter Type | Parameter Name | Initial Values | Note | |
---|---|---|---|---|
Hydrostratigraphic Units | Qfd | HK_1 | 0.15–18 m/d | Pilot points |
Qyt | HK_2 | 0.035–30 m/d | ||
Qot + Qcl | HK_3 | 0.043–63 m/d | ||
Lower aquifers | HK_4 | 0.12–13.5 m/d | ||
Vertical anisotropy | - | VANI | 0.1 | - |
Recharge rate | - | RCH | 100 mm/y | Pilot points |
Max evapotranspiration (ET) rate | - | EVT | 83.5 mm/y | |
Rive-bed conductance factor | Ping River | RIV_1 | 0.25 m2/m/d | - |
Kuang River | RIV_2 | 0.25 m2/m/d | ||
North and south GHB conductance factors | - | GHB | 0.25 m2/m/d | - |
Components | Inflow (Mm3/y) | Outflow (Mm3/y) |
---|---|---|
Recharge | 258.9 | - |
Evapotranspiration | - | 226.5 |
Pumping wells | - | 44.4 |
General Head Boundary | 13.5 | 11.7 |
Rivers Leakage | 11.4 | 1.5 |
Total (Mm3/y) | 283.8 | 284.0 |
Zones | Total RCH (Mm3/y) | Area (km2) | Average (mm/y) |
---|---|---|---|
Zone 1 | 13.0 | 117 | 111.4 |
Zone 2 | 1.0 | 9 | 112.0 |
Zone 3 | 26.9 | 240 | 112.1 |
Zone 4 | 42.9 | 330 | 130.2 |
Zone 5 | 1.5 | 14 | 109.1 |
Zone 6 | 9.0 | 67 | 134.6 |
Zone 7 | 22.3 | 97 | 230.3 |
Total | 258.9 | 2490 | 104.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afridi, M.Z.; Santha, N.; Taweelarp, S.; Ploymaklam, N.; Khebchareon, M.; Qamar, M.S.; Saenton, S. Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes. Sustainability 2025, 17, 5560. https://doi.org/10.3390/su17125560
Afridi MZ, Santha N, Taweelarp S, Ploymaklam N, Khebchareon M, Qamar MS, Saenton S. Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes. Sustainability. 2025; 17(12):5560. https://doi.org/10.3390/su17125560
Chicago/Turabian StyleAfridi, Muhammad Zakir, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Shoaib Qamar, and Schradh Saenton. 2025. "Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes" Sustainability 17, no. 12: 5560. https://doi.org/10.3390/su17125560
APA StyleAfridi, M. Z., Santha, N., Taweelarp, S., Ploymaklam, N., Khebchareon, M., Qamar, M. S., & Saenton, S. (2025). Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes. Sustainability, 17(12), 5560. https://doi.org/10.3390/su17125560