Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = hydrogen tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3122 KB  
Article
Performance Analysis of Offline Data-Driven Methods for Estimating the State of Charge of Metal Hydride Tanks
by Amina Yahia, Djafar Chabane, Salah Laghrouche, Abdoul N’Diaye and Abdesslem Djerdir
Energies 2025, 18(22), 5969; https://doi.org/10.3390/en18225969 - 13 Nov 2025
Abstract
This paper aims to propose an accurate method for estimating the state of charge (SoC) in metal hydride tanks (MHT) to enhance the energy management of hydrogen-powered fuel cell systems. Two data-driven prediction methods, Long Short-Term Memory (LSTM) networks and Support Vector Regression [...] Read more.
This paper aims to propose an accurate method for estimating the state of charge (SoC) in metal hydride tanks (MHT) to enhance the energy management of hydrogen-powered fuel cell systems. Two data-driven prediction methods, Long Short-Term Memory (LSTM) networks and Support Vector Regression (SVR), are developed and tested on experimental charge/discharge data from a dedicated MHT test bench. Three distinct LSTM architectures are evaluated alongside an SVR model to compare both generalization performance and computational overhead. Results demonstrate that the SVR approach achieves the lowest root mean square error (RMSE) of 0.0233% during discharge and 0.0283% during charge, while also requiring only 164 ms per inference step for both cycles. However, LSTM variants have a higher RMSE and significantly higher computational cost, which highlights the superiority of the SVR method. Full article
(This article belongs to the Special Issue Hydrogen Energy Generation, Storage, Transportation and Utilization)
Show Figures

Figure 1

33 pages, 4618 KB  
Article
Reliability and Risk Assessment of Hydrogen-Powered Marine Propulsion Systems Based on the Integrated FAHP-FMECA Framework
by Meng Wang, Fenghui Han, Huairui Li, Jingkai Zhou and Zhe Wang
J. Mar. Sci. Eng. 2025, 13(11), 2115; https://doi.org/10.3390/jmse13112115 - 7 Nov 2025
Viewed by 328
Abstract
With the IMO’s 2050 decarbonization target, hydrogen is a key zero-carbon fuel for shipping, but the lack of systematic risk assessment methods for hydrogen-powered marine propulsion systems (under harsh marine conditions) hinders its large-scale application. To address this gap, this study proposes an [...] Read more.
With the IMO’s 2050 decarbonization target, hydrogen is a key zero-carbon fuel for shipping, but the lack of systematic risk assessment methods for hydrogen-powered marine propulsion systems (under harsh marine conditions) hinders its large-scale application. To address this gap, this study proposes an integrated risk evaluation framework by fusing Failure Mode, Effects, and Criticality Analysis (FMECA) with the Fuzzy Analytic Hierarchy Process (FAHP)—resolving the limitation of traditional single evaluation tools and adapting to the dynamic complexity of marine environments. Scientific findings from this framework confirm that hydrogen leakage, high-pressure storage tank valve leakage, and inverter overload are the three most critical failure modes, with hydrogen leakage being the primary risk source due to its high severity and detection difficulty. Further hazard matrix analysis reveals two key risk mechanisms: one type of failure (e.g., insufficient hydrogen concentration) features “high severity but low detectability,” requiring real-time monitoring; the other (e.g., distribution board tripping) shows “high frequency but controllable impact,” calling for optimized operations. This classification provides a theoretical basis for precise risk prevention. Targeted improvement measures (e.g., dual-sealed valves, redundant cooling circuits, AI-based regulation) are proposed and quantitatively validated, reducing the system’s overall risk value from 4.8 (moderate risk) to 1.8 (low risk). This study’s core contribution lies in developing a universally applicable scientific framework for marine hydrogen propulsion system risk assessment. It not only fills the methodological gap in traditional evaluations but also provides a theoretical basis for the safe promotion of hydrogen shipping, supporting the scientific realization of the IMO’s decarbonization goal. Full article
(This article belongs to the Special Issue Marine Fuel Cell Technology: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 1824 KB  
Article
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
by Yiqi Zhao, Chuiju Meng and Yonghua Huang
Cryo 2025, 1(4), 14; https://doi.org/10.3390/cryo1040014 - 6 Nov 2025
Viewed by 164
Abstract
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vapor-cooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However, there is currently no effective and straightforward empirical correlation available for [...] Read more.
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vapor-cooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However, there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines, particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility, where the effects of temperature, pressure, and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data, the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines, which may contribute to the improvement of liquid hydrogen storage systems, enhancing both the efficiency and duration of storage. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

16 pages, 1654 KB  
Article
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
by A. Ousegui and B. Marcos
Hydrogen 2025, 6(4), 95; https://doi.org/10.3390/hydrogen6040095 - 1 Nov 2025
Viewed by 243
Abstract
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method [...] Read more.
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution, average pressure of the system, and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally, the pair (273 K, 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry, along with evaluating dynamic cycling performance in practical operating conditions. Additionally, experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications. Full article
Show Figures

Figure 1

20 pages, 2995 KB  
Article
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
by Xiang Li, Qun Wei, Lianyan Yu, Xiaobin Zhang, Yiting Zou, Yongcheng Zhu, Yanbo Peng, Daolin Wang, Zexian Zhu, Xianlei Chen, Yalei Zhao, Chengxu Tu and Fubing Bao
Energies 2025, 18(21), 5592; https://doi.org/10.3390/en18215592 - 24 Oct 2025
Viewed by 305
Abstract
As a key zero-carbon energy carrier, the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However, the ultra-low temperature, ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of [...] Read more.
As a key zero-carbon energy carrier, the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However, the ultra-low temperature, ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow, this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area, thereby suppressing boil-off gas generation and enhancing pressure stability, which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations, this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen, crucial for the accuracy of the phase-change simulation, were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database, as the ideal gas law is invalid under the cryogenic conditions studied. Specifically, the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phase-change processes, involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters, including inlet flow conditions and inlet liquid temperature, on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely, a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy. Full article
Show Figures

Figure 1

29 pages, 5197 KB  
Article
Comparative Techno-Economic and Life Cycle Assessment of Stationary Energy Storage Systems: Lithium-Ion, Lead-Acid, and Hydrogen
by Plamen Stanchev and Nikolay Hinov
Batteries 2025, 11(10), 382; https://doi.org/10.3390/batteries11100382 - 20 Oct 2025
Viewed by 1386
Abstract
This study presents a comparative techno-economic and environmental assessment of three leading stationary energy storage technologies: lithium-ion batteries, lead-acid batteries, and hydrogen systems (electrolyzer–tank–fuel cell). The analysis integrates Life Cycle Assessment (LCA) and Levelized Cost of Storage (LCOS) to provide a holistic evaluation. [...] Read more.
This study presents a comparative techno-economic and environmental assessment of three leading stationary energy storage technologies: lithium-ion batteries, lead-acid batteries, and hydrogen systems (electrolyzer–tank–fuel cell). The analysis integrates Life Cycle Assessment (LCA) and Levelized Cost of Storage (LCOS) to provide a holistic evaluation. The LCA covers the full cradle-to-grave stages, while LCOS accounts for capital and operational expenditures, efficiency, and cycling frequency. The results indicate that lithium-ion batteries achieve the lowest LCOS (120–180 EUR/MWh) and high round-trip efficiency (90–95%), making them optimal for short- and medium-duration storage. Lead-acid batteries, though characterized by low capital expenditures (CAPEX) and high recyclability (>95%), show limited cycle life and lower efficiency (75–80%). Hydrogen systems remain costly (>250 EUR/MWh) and less efficient (30–40%), yet they demonstrate clear advantages for long-term and seasonal storage, particularly under scenarios with “green” hydrogen production and reduced CAPEX. These findings provide practical guidance for policymakers, investors, and industry stakeholders in selecting appropriate storage solutions aligned with decarbonization and sustainability goals. Full article
Show Figures

Figure 1

19 pages, 9021 KB  
Article
Study on the Thermodynamic Behavior of Large Volume Liquid Hydrogen Bottle Under the Coupling of Different Motion States and Operational Parameters
by Jun Shen, Yuhang Liu, Yongmei Hao, Fei Li and Hui Zhou
Processes 2025, 13(10), 3340; https://doi.org/10.3390/pr13103340 - 18 Oct 2025
Viewed by 280
Abstract
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors, a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states, different operational pressures, [...] Read more.
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors, a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states, different operational pressures, and different insulation thicknesses, and their mutual coupling scenarios were studied. The results show that the movement makes the phase state in the liquid hydrogen bottle more uniform, the pressure drop rate faster, and the temperature lower: the heating rate in the liquid hydrogen bottle at 0.85 MPa operational pressure is lower than that at 0.5 MPa and 1.2 MPa. When the operational pressure is coupled with the motion state, the influence of the motion state on the thermodynamic behavior of the fluid is dominant: the temperature near the wall rises rapidly. The temperature near the tank wall rises rapidly; however, as the thickness of the insulation layer increases, both the heating rate inside the liquid hydrogen tank and the temperature difference within the tank gradually tend to stabilize and become uniform. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

31 pages, 5934 KB  
Article
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
by Tuba Tezer
Processes 2025, 13(10), 3339; https://doi.org/10.3390/pr13103339 - 18 Oct 2025
Viewed by 548
Abstract
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, [...] Read more.
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, a fuel cell-based combined heat and power (CHP) unit, and a boiler to meet both electrical and thermal demands. Within this broader optimization framework, six optimal configurations emerged, representing grid-connected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh), with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways, coordinated operation, waste heat utilization, and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE, confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE, particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers, while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall, these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

23 pages, 8144 KB  
Article
Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems
by Rankai Zhu, Yuxi Li, Xu Huang, Yaoxuan Xia, Yunjin Tu, Bowen Zheng, Jing Qiu and Xiaoshun Zhang
Technologies 2025, 13(10), 472; https://doi.org/10.3390/technologies13100472 - 18 Oct 2025
Viewed by 518
Abstract
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy, integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems, owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper [...] Read more.
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy, integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems, owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs, focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL), a fuel cell (FC), hydrogen storage tanks, and battery energy storage was constructed. Three optimisation objectives—cost minimisation, carbon emission minimisation, and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability, environmental performance, and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction, providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems. Full article
Show Figures

Figure 1

13 pages, 896 KB  
Article
Effect of Real Gas Equations on Calculation Accuracy of Thermodynamic State in Hydrogen Storage Tank
by Hao Luo, Qianqian Xin, Cenling Yao, Chenglong Li, Tianqi Yang, Xianhuan Wu, Richard Chahine and Jinsheng Xiao
Appl. Sci. 2025, 15(20), 11151; https://doi.org/10.3390/app152011151 - 17 Oct 2025
Viewed by 385
Abstract
The gas equation of state (EOS) serves as a critical tool for analyzing the thermal effects within the hydrogen storage tank during refueling processes. It quantifies the dynamic relationships among pressure, temperature and volume, playing a vital role in numerical simulations of hydrogen [...] Read more.
The gas equation of state (EOS) serves as a critical tool for analyzing the thermal effects within the hydrogen storage tank during refueling processes. It quantifies the dynamic relationships among pressure, temperature and volume, playing a vital role in numerical simulations of hydrogen refueling, the development of refueling protocols, and ensuring refueling safety. This study first establishes a lumped-parameter thermodynamic model for the hydrogen refueling process, which combines a zero-dimensional gas model with a one-dimensional tank wall model (0D1D). The model’s accuracy was validated against experimental data and will be used in combination with different EOSs to simulate hydrogen temperature and pressure. Subsequently, parameter values are derived for the van der Waals EOS and its modified forms—Redlich–Kwong, Soave, and Peng–Robinson. The accuracy of the modified forms is evaluated using the Joule–Thomson inversion curve. A polynomial EOS is formulated, and its parameters are numerically determined. Finally, the hydrogen temperatures and pressures calculated using the van der Waals EOS, Redlich–Kwong EOS, polynomial EOS, and the National Institute of Standards and Technology (NIST) database are compared. Within the initial and boundary conditions set in this study, the results indicate that among the modified forms for van der Waals EOS, the Redlich–Kwong EOS exhibits higher accuracy than the Soave and Peng–Robinson EOSs. Using the NIST-calculated hydrogen pressure as a benchmark, the relative error is 0.30% for the polynomial EOS, 1.83% for the Redlich–Kwong EOS, and 17.90% for the van der Waals EOS. Thus, the polynomial EOS exhibits higher accuracy, followed by the Redlich–Kwong EOS, while the van der Waals EOS demonstrates lower accuracy. This research provides a theoretical basis for selecting an appropriate EOS in numerical simulations of hydrogen refueling processes. Full article
Show Figures

Figure 1

19 pages, 2287 KB  
Review
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
by Meng Yu, Yang Wu, Jiake Wu, Yongxiang Zhu, Xiangjun Yu and Long Jiang
Hydrogen 2025, 6(4), 89; https://doi.org/10.3390/hydrogen6040089 - 15 Oct 2025
Viewed by 441
Abstract
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key [...] Read more.
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key technical issues. In LH storage tanks, the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel, which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure, shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials, methods, and design approaches related to hydrogen storage. First, it summarizes adsorbents used in liquid hydrogen storage tanks, including cryogenic adsorbents, metal oxides, zeolite molecular sieves, and non-volatile compounds. Second, it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks, analyzing key challenges faced in practical applications and corresponding countermeasures. Finally, it proposes research prospects for exploring novel adsorbents and developing integrated systems. Full article
Show Figures

Figure 1

22 pages, 3035 KB  
Article
Multi-Fuel SOFC System Modeling for Ship Propulsion: Comparative Performance Analysis and Feasibility Assessment of Ammonia, Methanol and Hydrogen as Marine Fuels
by Simona Di Micco, Peter Sztrinko, Aniello Cappiello, Viviana Cigolotti and Mariagiovanna Minutillo
J. Mar. Sci. Eng. 2025, 13(10), 1960; https://doi.org/10.3390/jmse13101960 - 14 Oct 2025
Viewed by 449
Abstract
To reduce fossil fuel dependency in shipping, adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC), powered by hydrogen carriers, represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels, capable of operating with [...] Read more.
To reduce fossil fuel dependency in shipping, adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC), powered by hydrogen carriers, represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels, capable of operating with ammonia, methanol, or hydrogen, thus enhancing bunkering flexibility. A thermodynamic model is developed to simulate the performance of a 3 kW small-scale system, subsequently scaling up to a 10 MW configuration to meet the power demand of a container ship used as the case study. Results show that methanol is the most efficient fueling option, reaching a system efficiency of 58% while ammonia and hydrogen reach slightly lower values of about 55% and 51%, respectively, due to higher auxiliary power consumption. To assess technical feasibility, two installation scenarios are considered for accommodating multiple fuel tanks. The first scenario seeks the optimal fuel share equivalent to the diesel tank’s chemical energy (17.6 GWh), minimizing mass increase. The second scenario optimizes the fuel share within the available tank volume (1646 m3), again, minimizing mass penalties. In both cases, feasibility results have highlighted that changes are needed in terms of cargo reduction, equal to 20.3%, or, alternatively, in terms of lower autonomy with an increase in refueling stops. These issues can be mitigated by the benefits of increased bunkering flexibility. Full article
(This article belongs to the Special Issue Research and Development of Green Ship Energy)
Show Figures

Figure 1

21 pages, 3517 KB  
Article
Double-Layer Optimal Configuration of Wind–Solar-Storage for Multi-Microgrid with Electricity–Hydrogen Coupling
by Dong Yang, Gangying Pan, Jianhua Zhang, Jun He, Yulin Zhang and Chuanliang Xiao
Processes 2025, 13(10), 3263; https://doi.org/10.3390/pr13103263 - 13 Oct 2025
Viewed by 468
Abstract
To address the collaborative optimization challenge in multi-microgrid systems with significant renewable energy integration, this study presents a dual-layer optimization model incorporating power-hydrogen coupling. Firstly, a hydrogen energy system coupling framework including photovoltaics, storage batteries, and electrolysis hydrogen production/fuel cells was constructed at [...] Read more.
To address the collaborative optimization challenge in multi-microgrid systems with significant renewable energy integration, this study presents a dual-layer optimization model incorporating power-hydrogen coupling. Firstly, a hydrogen energy system coupling framework including photovoltaics, storage batteries, and electrolysis hydrogen production/fuel cells was constructed at the architecture level to realize the flexible conversion of multiple energy forms. From a modeling perspective, the upper-layer optimization aims to minimize lifecycle costs by determining the optimal sizing of distributed PV systems, battery storage, hydrogen tanks, fuel cells, and electrolyzers within the microgrid. At the lower level, a distributed optimization framework facilitates energy sharing (both electrical and hydrogen-based) across microgrids. This operational layer maximizes yearly system revenue while considering all energy transactions—both inter-microgrid and grid-to-microgrid exchanges. The resulting operational boundaries feed into the upper-layer capacity optimization, with the optimal equipment configuration emerging from the iterative convergence of both layers. Finally, the actual microgrid in a certain area is taken as an example to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 2257 KB  
Article
Hybrid Renewable Energy Systems: Integration of Urban Mobility Through Metal Hydrides Solution as an Enabling Technology for Increasing Self-Sufficiency
by Lorenzo Bartolucci, Edoardo Cennamo, Stefano Cordiner, Vincenzo Mulone and Alessandro Polimeni
Energies 2025, 18(19), 5306; https://doi.org/10.3390/en18195306 - 8 Oct 2025
Viewed by 479
Abstract
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most [...] Read more.
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most studies have focused either on stationary applications or on mobility, seldom addressing their integration withing a single framework. In particular, the potential of Metal Hydride (MH) tanks remains largely underexplored in the context of sector coupling, where the same storage unit can simultaneously sustain household demand and provide in-house refueling for light-duty fuel-cell vehicles. This study presents the design and analysis of a residential-scale HRES that combines photovoltaic generation, a PEM electrolyzer, a lithium-ion battery and MH storage intended for direct integration with a fuel-cell electric microcar. A fully dynamic numerical model was developed to evaluate system interactions and quantify the conditions under which low-pressure MH tanks can be effectively integrated into HRES, with particular attention to thermal management and seasonal variability. Two simulation campaigns were carried out to provide both component-level and system-level insights. The first focused on thermal management during hydrogen absorption in the MH tank, comparing passive and active cooling strategies. Forced convection reduced absorption time by 44% compared to natural convection, while avoiding the additional energy demand associated with thermostatic baths. The second campaign assessed seasonal operation: even under winter irradiance conditions, the system ensured continuous household supply and enabled full recharge of two MH tanks every six days, in line with the hydrogen requirements of the light vehicle daily commuting profile. Battery support further reduced grid reliance, achieving a Grid Dependency Factor as low as 28.8% and enhancing system autonomy during cold periods. Full article
Show Figures

Figure 1

44 pages, 9261 KB  
Review
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
by Francesco Piraino, Leonardo Pagnotta, Orlando Corigliano, Matteo Genovese and Petronilla Fragiacomo
Hydrogen 2025, 6(4), 80; https://doi.org/10.3390/hydrogen6040080 - 3 Oct 2025
Viewed by 2489
Abstract
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful [...] Read more.
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful for improving mechanical strength and permeability, have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement, as well as exploring geometric optimization methodologies and manufacturing techniques, such as helical winding. Additionally, emerging technologies, such as integrated smart sensors for real-time monitoring of tank performance, are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations, with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications. Full article
Show Figures

Figure 1

Back to TopTop