Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = hydrogen peroxide sensitivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3465 KiB  
Article
Inhibitory Effects of Selected Chemical Substances on the Growth of Filamentous Fungi Occurring in Cellar Management
by Karolina Kostelnikova, Romana Heralecka, Anna Krpatova, Filip Matousek, Jiri Sochor and Mojmir Baron
Microbiol. Res. 2025, 16(8), 182; https://doi.org/10.3390/microbiolres16080182 - 4 Aug 2025
Abstract
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate [...] Read more.
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate the inhibitory properties. The results demonstrated different sensitivities of filamentous fungi to the inhibitors. All tested substances displayed fungicidal properties. Sulphur dioxide (40% NH4HSO3 solution) inhibited growth at a 4% v/v concentration. No minimum effective concentration was established for H2O2; only a 30% w/v solution inhibited P. expansum. CuSO4·5H2O completely inhibited fungal growth at 5% w/v solution, with 2.5% w/v also proving effective. For the chlorine-based product, 40% w/v solution (48 g∙L−1 active chlorine) had the most substantial effect, though it only slowed growth, and NaClO solution completely inhibited growth at 2.35 g NaClO per 100 g of product (50% w/v solution). FungiSAN demonstrated fungicidal effects; however, the recommended dose was insufficient for complete inhibition. Ethanol exhibited the lowest efficacy, while the inhibitory threshold for CH3COOH was found to be a 5% v/v solution. The findings of this study may serve as a basis for informed decision-making when selecting the most suitable product, depending on specific application conditions. Full article
Show Figures

Graphical abstract

13 pages, 2697 KiB  
Communication
Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
by Qingmei Zhong, Xiaomei Rong, Tingting Wu and Chuan Yan
Biosensors 2025, 15(8), 490; https://doi.org/10.3390/bios15080490 - 29 Jul 2025
Viewed by 299
Abstract
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While [...] Read more.
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While conventional colorimetric determination methods predominantly employ enzymatic or nanozyme catalysts, we present an innovative non-catalytic approach utilizing the redox-responsive properties of organic neutral radicals. Specifically, we designed and synthesized a novel radical TTM-DMODPA based on the tris (2,4,6-trichlorophenyl) methyl (TTM) scaffold, which exhibits remarkable optical tunability and oxidative sensitivity. This system enables dual-mode H2O2 quantification: (1) UV-vis spectrophotometry (linear range: 2.5–250 μmol/L, LOD: 1.275 μmol/L) and (2) smartphone-based visual analysis (linear range: 2.5–250 μmol/L, LOD: 3.633 μmol/L), the latter being particularly suitable for point-of-care testing. Validation studies using urine samples demonstrated excellent recovery rates (96–104%), confirming the method’s reliability for real-sample applications. Our work establishes a portable, instrument-free platform for urinary H2O2 determination, with significant potential in clinical diagnostics and environmental monitoring. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

17 pages, 574 KiB  
Systematic Review
Hydrogen Peroxide-Free Color Correctors for Tooth Whitening in Adolescents and Young Adults: A Systematic Review of In Vitro and Clinical Evidence
by Madalina Boruga, Gianina Tapalaga, Magda Mihaela Luca and Bogdan Andrei Bumbu
Dent. J. 2025, 13(8), 346; https://doi.org/10.3390/dj13080346 - 28 Jul 2025
Viewed by 471
Abstract
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of [...] Read more.
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of hydrogen peroxide-free color corrector (HPFCC) products, focusing on color change metrics, enamel and dentin integrity, and adverse effects. Methods: Following PRISMA guidelines, we searched PubMed, Scopus, and Web of Science throughout January 2025 for randomized controlled trials, observational studies, and in vitro experiments comparing HPFCC to placebo or peroxide-based agents. The data extraction covered study design, sample characteristics, intervention details, shade improvement (ΔE00 or CIE Lab), enamel/dentin mechanical properties (microhardness, roughness, elastic modulus), and incidence of sensitivity or tissue irritation. Risk of bias was assessed using the Cochrane tool for clinical studies and the QUIN tool for in vitro research. Results: Six studies (n = 20–80 samples or subjects) met the inclusion criteria. In vitro, HPFCC achieved mean ΔE00 values of 3.5 (bovine incisors; n = 80) and 2.8 (human molars; n = 20), versus up to 8.9 for carbamide peroxide (p < 0.01). Across studies, HPFCC achieved a mean ΔE00 of 2.8–3.5 surpassing the perceptibility threshold of 2.7 and approaching the clinical acceptability benchmark of 3.3. Surface microhardness increased by 12.9 ± 11.7 VHN with HPFCC (p < 0.001), and ultramicrohardness rose by 110 VHN over 56 days in prolonged use studies. No significant enamel erosion or dentin roughness changes were observed, and the sensitivity incidence remained below 3%. Conclusions: These findings derive from one clinical trial (n = 60) and five in vitro studies (n = 20–80), encompassing violet-pigment serums and gels with differing concentrations. Due to heterogeneity in designs, formulations, and outcome measures, we conducted a narrative synthesis rather than a meta-analysis. Although HPFCC ΔE00 values were lower than those of carbamide peroxide, they consistently exceeded perceptibility thresholds while maintaining enamel integrity and causing sensitivity in fewer than 3% of subjects, supporting HPFCCs as moderate but safe alternatives for young patients. Full article
Show Figures

Figure 1

19 pages, 1683 KiB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Viewed by 242
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

15 pages, 2563 KiB  
Communication
H2O2 Sensitivity of Kv Channels in Hypoxic Pulmonary Vasoconstriction: Experimental Conditions Matter
by Ornella Tchokondu Yamdjeu, Anouk Begerow, Natascha Sommer, Martin Diener, Norbert Weissmann and Fenja Knoepp
Int. J. Mol. Sci. 2025, 26(14), 6857; https://doi.org/10.3390/ijms26146857 - 17 Jul 2025
Viewed by 252
Abstract
Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange but, when impaired, can result in life-threatening hypoxemia. Moreover, under conditions of generalized alveolar hypoxia, HPV can result in pulmonary hypertension. Voltage-gated K+ channels (Kv channels) are key to HPV: a change in the [...] Read more.
Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange but, when impaired, can result in life-threatening hypoxemia. Moreover, under conditions of generalized alveolar hypoxia, HPV can result in pulmonary hypertension. Voltage-gated K+ channels (Kv channels) are key to HPV: a change in the intracellular hydrogen peroxide (H2O2) levels during acute hypoxia is assumed to modulate these channels’ activity to trigger HPV. However, there are longstanding conflicting findings on whether H2O2 inhibits or activates Kv channels. Therefore, we hypothesized that H2O2 affects Kv channels depending on the experimental conditions, i.e., the H2O2 concentration, the channel’s subunit configuration or the experimental clamping potential in electrophysiological recordings. Therefore, cRNAs encoding the Kv1.5 channel and the auxiliary Kvβ subunits (Kvβ1.1, Kvβ1.4) were generated via in vitro transcription before being injected into Xenopus laevis oocytes for heterologous expression. The K+ currents of homomeric (Kv1.5) or heteromeric (Kv1.5/Kvβ1.1 or Kv1.5/Kvβ1.4) channels were assessed by two-electrode voltage clamp. The response of the Kv channels to H2O2 was markedly dependent on (a) the clamping potential, (b) the H2O2 concentration, and (c) the Kv channel’s subunit composition. In conclusion, our data highlight the importance of the choice of experimental conditions when assessing the H2O2 sensitivity of Kv channels in the context of HPV, thus providing an explanation for the long-lasting controversial findings reported in the literature. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

25 pages, 18692 KiB  
Article
Hydrothermally Synthesized TiO2 Nanostructures for Electrochemical Detection of H2O2 in Barley (Hordeum vulgare) Under Salt Stress and Remediation with Fe3O4 Nanoparticles
by Irena Mihailova, Marina Krasovska, Eriks Sledevskis, Vjaceslavs Gerbreders, Jans Keviss, Valdis Mizers, Inese Kokina, Ilona Plaksenkova, Marija Jermalonoka and Aleksandra Mosenoka
Chemosensors 2025, 13(7), 256; https://doi.org/10.3390/chemosensors13070256 - 14 Jul 2025
Viewed by 419
Abstract
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor [...] Read more.
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor exhibited a linear detection range of 0–0.5 mM, a sensitivity of 0.0393 mA · mM−1, and a detection limit of 2.8 μM in phosphate-buffered saline solution (PBS, pH 7.4). This work’s main novelty lies in the systematic investigation of the relationship between TiO2 nanostructure morphology, which is controlled by hydrothermal synthesis parameters, and the resulting sensor performance. Interference studies confirmed excellent selectivity in the presence of common electroactive species found in plant samples, such as NaCl, KNO3, glucose, citric acid, and ascorbic acid. Real sample analysis using barley plant extracts grown under salt stress and treated with Fe3O4 nanoparticles confirmed the sensor’s applicability in complex biological matrices, enabling accurate quantification of endogenously produced H2O2. Endogenous H2O2 concentrations were found to range from near-zero levels in control and Fe3O4-only treated plants, to elevated levels of up to 0.36 mM in salt-stressed samples. These levels decreased to 0.25 and 0.15 mM upon Fe3O4 nanoparticle treatment, indicating a dose-dependent mitigation of stress. This finding was supported by genome template stability (GTS) analysis, which revealed improved DNA integrity in Fe3O4-treated plants. This study takes an integrated approach, combining the development of a nanostructured sensor with physiological and molecular stress assessment. The urgent need for tools to detect stress at an early stage and manage oxidative stress in sustainable agriculture underscores its relevance. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 414
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

17 pages, 1484 KiB  
Article
Genotypic Variation in Drought-Season Stress Responses Among Traditional Fig (Ficus carica L.) Varieties from Mediterranean Transition Zones of Northern Morocco
by Mohammed Elmeknassia, Abdelali Boussakouran, Rachid Boulfia and Yahia Rharrabti
Plants 2025, 14(12), 1879; https://doi.org/10.3390/plants14121879 - 19 Jun 2025
Viewed by 502
Abstract
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly [...] Read more.
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly affects fruit quality and production. Selecting and preserving resilient varieties among traditional varieties, representing centuries of local adaptation, is a vital strategy for addressing the challenges driven by climate change. In this context, this study assessed the physiological and biochemical parameters of the leaves of four fig landrace varieties (Fassi, Ghouddane, Nabout, and Ounq Hmam) grown in three different Mediterranean transitional zones of northern Morocco (Chefchaouen, Taounate, and Taza), during a single timepoint assessment conducted in late August 2023. The combined effects of location, variety, and their interactions on chlorophyll fluorescence (Fv/Fm), Soil Plant Analysis Development (SPAD) index, total chlorophyll content (ChlT), canopy temperature depression (CTD), proline content, protein content, total soluble sugar (TSS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were determined. Significant variation was observed among varieties and locations, with the location effect being observed for proline content, protein content, TSS, CTD, and ChlT, while variety had a stronger influence on SPAD, Fv/Fm, H2O2, and MDA. The results showed that Nabout and Ounq Hmam varieties had the greatest photosynthetic efficiency, as indicated by their elevated SPAD index, ChlT, and Fv/Fm values, and showed lower sensitivity to oxidative stress (low proline content, H2O2, and MDA levels). In contrast, Ghouddane and Fassi displayed better stress tolerance, presenting higher levels of oxidative stress markers. Among locations, Chefchaouen showed the highest protein, TSS, H2O2, and MDA levels, reflecting active stress tolerance mechanisms. These variations were confirmed by principal component analysis, which revealed a clear separation between photosynthetically efficient varieties (Nabout and Ounq Hmam) and stress-tolerant varieties (Ghouddane and Fassi). More than a conventional crop physiology study, this work highlights the adaptive strategies in traditional Mediterranean fig germplasm that could be crucial for climate change adaptation. While our findings are limited to a single season, they offer valuable, practical insights that can inform grower decision-making in the near term, especially when considered alongside local knowledge and additional research. Full article
(This article belongs to the Special Issue Ecophysiology and Quality of Crops)
Show Figures

Figure 1

12 pages, 857 KiB  
Review
Stress Management: How the Endoplasmic Reticulum Mitigates Protein Misfolding and Oxidative Stress by the Dual Role of Glutathione Peroxidase 8
by Yong Yang, Hao Peng, Danni Meng, Zizhu Fa, Chen Yao, Xinyu Lin, Joel Schick and Xiang Jin
Biomolecules 2025, 15(6), 847; https://doi.org/10.3390/biom15060847 - 10 Jun 2025
Viewed by 978
Abstract
The endoplasmic reticulum mediates essential processes such as protein folding, transport, and post-translational modifications. Disruptions in endoplasmic reticulum function can lead to the accumulation of unfolded or misfolded proteins, initiating endoplasmic reticulum stress. This stress activates the unfolded protein response, a multifaceted signaling [...] Read more.
The endoplasmic reticulum mediates essential processes such as protein folding, transport, and post-translational modifications. Disruptions in endoplasmic reticulum function can lead to the accumulation of unfolded or misfolded proteins, initiating endoplasmic reticulum stress. This stress activates the unfolded protein response, a multifaceted signaling pathway aimed at restoring proteostasis, which is crucial for cellular survival and fate determination. This review summarizes the current knowledge of three major branches of the unfolded protein response: the IRE1, PERK, and ATF6 signaling pathways. A key novel component in endoplasmic reticulum stress adaptation is the redox-sensitive enzyme glutathione peroxidase 8 (GPX8), which plays a dual role in detoxifying hydrogen peroxide and supporting proper protein folding. By connecting unfolded protein response branches, GPX8 reduces oxidative damage while maintaining redox homeostasis, emphasizing its importance in endoplasmic reticulum stability. Furthermore, plant glutathione peroxidases exhibit parallel functions in endoplasmic reticulum redox homeostasis and unfolded protein response activation, highlighting the evolutionary conservation of this protective mechanism across kingdoms. Understanding the intricate relationship between GPX8, endoplasmic reticulum stress, and unfolded protein response signaling provides novel insights into therapeutic strategies for diseases characterized by protein folding defects and oxidative stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1781 KiB  
Article
Sensitive Hydrogen Peroxide Sensor Based on Hexacyanoferrate Nickel–Carbon Nanodots
by Emiliano Martínez-Periñán, Juan Manuel Hernández-Gómez, Encarnación Lorenzo and Cristina Gutiérrez-Sánchez
Chemosensors 2025, 13(6), 195; https://doi.org/10.3390/chemosensors13060195 - 22 May 2025
Viewed by 727
Abstract
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a [...] Read more.
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a nickel hexacyanoferrate complex was electrogenerated over the nickel carbon nanodots. Ni-CNDs were synthetized “a la carte” in one step by including nickel (II) acetate as precursor and characterized using different techniques: transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, atomic force microscopy (AFM), and infrared spectroscopy (FTIR). The electrocatalytic activity toward H2O2 reduction and the oxidation of the resulting modified electrodes was studied. The developed sensor had a strong electrocatalytic effect on the oxidation and reduction of H2O2, yielding detection limits of 3.22 and 0.49 μM, respectively. The H2O2 content of a tap water sample was determined, confirming the viability of the developed electrochemical sensor. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 608
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

14 pages, 6056 KiB  
Article
Preparation of Colloidal Silver Triangular Nanoplates and Their Application in SERS Detection of Trace Levels of Antibiotic Enrofloxacin
by Cao Tuan Anh, Dao Tran Cao and Luong Truc-Quynh Ngan
Colloids Interfaces 2025, 9(3), 31; https://doi.org/10.3390/colloids9030031 - 16 May 2025
Viewed by 584
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of chemicals due to its capacity to significantly amplify the Raman signal of the molecules of these substances. This is particularly relevant in food systems where monitoring antibiotic residues is critical [...] Read more.
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of chemicals due to its capacity to significantly amplify the Raman signal of the molecules of these substances. This is particularly relevant in food systems where monitoring antibiotic residues is critical for food safety. Traditional SERS substrates typically utilize colloidal silver nanospheres (AgNSs), but anisotropic silver nanoparticles with numerous sharp tips can further enhance SERS sensitivity, enabling lower detection limits suitable for food safety regulations. In this study, we describe a straightforward synthesis of colloidal silver triangular nanoplates (AgTNPls), featuring multiple sharp tips, using only four common reagents: silver nitrate, trisodium citrate, sodium borohydride (NaBH4) and hydrogen peroxide (H2O2), all at room temperature. By carefully controlling the sequence of reagent addition, specifically introducing H2O2 after NaBH4, we achieved a two-step synthesis. In the first step, AgNSs seeds form, and in the second, these seeds convert into AgTNPls, resulting in a colloid of relatively uniform AgTNPls with an edge length of approximately 52 nm. The resulting AgTNPls colloid, combined with an aluminum foil, produced an SERS substrate with high enhancement factor of 3.2 × 109 (using rhodamine 6G as a test molecule). Applied to enrofloxacin (an antibiotic widely used in livestock and aquaculture) detection, this substrate achieved a detection limit as low as 0.39 µg/L (0.39 ppb), with enrofloxacin detectable at concentrations down to 5 µg/L. This highly sensitive SERS substrate holds great promise for rapid, accurate detection of antibiotic residues in food products, aiding regulatory compliance and food safety assurance. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 488
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

11 pages, 2977 KiB  
Article
An Electrochemical Aptasensor for Accurate and Sensitive Detection of Exosomes Based on Dual-Probe Recognition and Hybridization Chain Reaction
by Haojie Ma, Jie Li, Mengjia Gao, Yan Dong, Yi Luo and Shao Su
Biosensors 2025, 15(5), 302; https://doi.org/10.3390/bios15050302 - 9 May 2025
Viewed by 649
Abstract
The accurate and sensitive detection of tumor-derived exosomes holds significant promise for the early diagnosis of cancer. In this study, an electrochemical aptasensor was developed for the high-performance detection of exosomes by integrating dual-probe recognition and hybridization chain reaction (HCR). A dual-probe recognition [...] Read more.
The accurate and sensitive detection of tumor-derived exosomes holds significant promise for the early diagnosis of cancer. In this study, an electrochemical aptasensor was developed for the high-performance detection of exosomes by integrating dual-probe recognition and hybridization chain reaction (HCR). A dual-probe recognition unit composed of a MUC1 aptamer (MUC1-Apt) probe and cholesterol probe was designed for capturing target exosomes and reducing the interference from free proteins, significantly improving the accuracy of exosome detection. It should be noted that the dual-probe recognition unit was formed in conjunction with the HCR. Moreover, a large number of biotins were also assembled on the HCR product, which were used to capture avidin–horseradish peroxidase (SA-HRP) for signal amplification. The CD63 aptamer (CD63-Apt) was immobilized on the surface of a gold electrode for specifically capturing exosomes to construct a classical sandwiched structure. The loaded SA-HRP can efficiently catalyze the reaction of 3, 3′, 5, 5′ tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) to generate a large electrochemical signal. According to this phenomenon, a linear relationship of this proposed aptasensor was achieved between the electrochemical response and 1 × 102–1 × 107 particles/mL exosomes, with a detection limit of 45 particles/mL. Moreover, the aptasensor exhibited accepted stability and potential clinical applicability. All results proved that this aptasensor has a promising application in exosome-based disease diagnostics. Full article
(This article belongs to the Special Issue Electrochemical Biosensing Platforms for Food, Drug and Health Safety)
Show Figures

Figure 1

17 pages, 2053 KiB  
Article
Impact of Phytoplankton Biomass on the Growth and Development of Agricultural Plants
by Jurga Jankauskienė, Kornelija Janušaitienė, Jūratė Karosienė, Ričardas Paškauskas, Sigita Jurkonienė and Rima Mockevičiūtė
Agronomy 2025, 15(5), 1120; https://doi.org/10.3390/agronomy15051120 - 30 Apr 2025
Viewed by 447
Abstract
The agricultural sector plays one of the pivotal roles in fulfilling the objectives set forth by the EU Green Deal. However, the extensive use of synthetic fertilizers has contributed to nutrient over-enrichment in aquatic ecosystems, promoting eutrophication due to excess nitrogen inputs from [...] Read more.
The agricultural sector plays one of the pivotal roles in fulfilling the objectives set forth by the EU Green Deal. However, the extensive use of synthetic fertilizers has contributed to nutrient over-enrichment in aquatic ecosystems, promoting eutrophication due to excess nitrogen inputs from fertilizers. This phenomenon is a key driver of rapid and excessive algal blooms in rivers, lakes, and seas. In this study, three globally cultivated crop species—oilseed rape (Brassica napus L.), common wheat (Triticum aestivum L.), and pea (Pisum sativum L.)—were selected for experimental analysis, including the assessment of biochemical parameters such as proline content, lipid peroxidation levels, hydrogen peroxide production, total phenol content, and antioxidant activity, which were evaluated to determine the potential of phytoplankton biomass as a substitute for synthetic fertilizers. Various quantities of lyophilized phytoplankton biomass, collected from the Curonian Lagoon, a biologically productive and ecologically sensitive brackish water body in the southeastern Baltic region, were incorporated into the growth substrates of the studied plants. The findings indicate that utilizing excess phytoplankton biomass can serve not only as a plant growth biostimulant but also as a sustainable alternative to synthetic fertilizers, thereby contributing to improved water quality and more environmentally responsible agricultural practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop