Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = hydride vapor phase epitaxy (HVPE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 16763 KiB  
Review
Epitaxial Growth of Ga2O3: A Review
by Imteaz Rahaman, Hunter D. Ellis, Cheng Chang, Dinusha Herath Mudiyanselage, Mingfei Xu, Bingcheng Da, Houqiang Fu, Yuji Zhao and Kai Fu
Materials 2024, 17(17), 4261; https://doi.org/10.3390/ma17174261 - 28 Aug 2024
Cited by 5 | Viewed by 5397
Abstract
Beta-phase gallium oxide (β-Ga2O3) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power [...] Read more.
Beta-phase gallium oxide (β-Ga2O3) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power electronics and deep ultraviolet optoelectronics. Key advantages of β-Ga2O3 include the availability of large-size single-crystal bulk native substrates produced from melt and the precise control of n-type doping during both bulk growth and thin-film epitaxy. A comprehensive understanding of the fundamental growth processes, control parameters, and underlying mechanisms is essential to enable scalable manufacturing of high-performance epitaxial structures. This review highlights recent advancements in the epitaxial growth of β-Ga2O3 through various techniques, including Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVPE), Mist Chemical Vapor Deposition (Mist CVD), Pulsed Laser Deposition (PLD), and Low-Pressure Chemical Vapor Deposition (LPCVD). This review concentrates on the progress of Ga2O3 growth in achieving high growth rates, low defect densities, excellent crystalline quality, and high carrier mobilities through different approaches. It aims to advance the development of device-grade epitaxial Ga2O3 thin films and serves as a crucial resource for researchers and engineers focused on UWBG semiconductors and the future of power electronics. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

10 pages, 4680 KiB  
Article
Crystallographic Orientation and Strain in GaN Crystals Grown on 6H-SiC and Sapphire Substrates
by Yongliang Shao, Haixiao Hu, Baoguo Zhang, Xiaopeng Hao and Yongzhong Wu
Crystals 2023, 13(12), 1694; https://doi.org/10.3390/cryst13121694 - 16 Dec 2023
Cited by 7 | Viewed by 2818
Abstract
The crystallographic-orientation relationship between GaN crystals grown via hydride vapor phase epitaxy (HVPE) on 6H-SiC was investigated. This study employed electron backscatter diffraction (EBSD) Kikuchi diffraction patterns and pole figures to identify this relationship and calculate lattice mismatches. Comparing the misorientation of GaN [...] Read more.
The crystallographic-orientation relationship between GaN crystals grown via hydride vapor phase epitaxy (HVPE) on 6H-SiC was investigated. This study employed electron backscatter diffraction (EBSD) Kikuchi diffraction patterns and pole figures to identify this relationship and calculate lattice mismatches. Comparing the misorientation of GaN crystals on different substrates along the growth direction using EBSD mapping, we identify the strain in GaN based on crystallographic-orientation results. Raman spectroscopy results correlate residual stress in GaN with lattice mismatches, aligning with our previous works. Residual stress of GaN on different substrates identified using PL spectrum also confirmed these results. The HRXRD characterized the dislocation density of GaN crystals grown on these substrates. Full article
Show Figures

Figure 1

10 pages, 2017 KiB  
Article
Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy
by Zaid Alemoush, Attasit Tingsuwatit, Jing Li, Jingyu Lin and Hongxing Jiang
Crystals 2023, 13(9), 1319; https://doi.org/10.3390/cryst13091319 - 29 Aug 2023
Cited by 8 | Viewed by 1830
Abstract
Hexagonal BN (h-BN) has emerged as an important ultrawide bandgap (UWBG) semiconductor (Eg~6 eV). The crystal growth technologies for producing semi-bulk crystals/epilayers in large wafer sizes and understanding of defect properties lag decades behind conventional III-nitride wide bandgap (WBG) semiconductors. Here [...] Read more.
Hexagonal BN (h-BN) has emerged as an important ultrawide bandgap (UWBG) semiconductor (Eg~6 eV). The crystal growth technologies for producing semi-bulk crystals/epilayers in large wafer sizes and understanding of defect properties lag decades behind conventional III-nitride wide bandgap (WBG) semiconductors. Here we report probing of boron vacancy (VB)-related defects in freestanding h-BN semi-bulk wafers synthesized by hydride vapor phase epitaxy (HVPE). A photocurrent excitation spectroscopy (PES) was designed to monitor the transport of photoexcited holes from deep-level acceptors. A dominant transition line at 1.66 eV with a side band near 1.62 eV has been directly observed, which matches well with the calculated energy levels of 1.65 for the VB-H deep acceptor in h-BN. The identification of VB complexes via PES measurement was further corroborated by the temperature-dependent dark resistivity and secondary ion mass spectrometry measurements. The results presented here suggested that it is necessary to focus on the optimization of V/III ratio during HVPE growth to minimize the generation of VB-related defects and to improve the overall material quality of h-BN semi-bulk crystals. The work also provided a better understanding of how VB complexes behave and affect the electronic and optical properties of h-BN. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

13 pages, 3696 KiB  
Article
Analysis of Crystalline Defects Caused by Growth on Partially Planarized Spalled (100) GaAs Substrates
by Jacob T. Boyer, Anna K. Braun, Kevin L. Schulte, John Simon, Steven W. Johnston, Harvey L. Guthrey, Myles A. Steiner, Corinne E. Packard and Aaron J. Ptak
Crystals 2023, 13(4), 681; https://doi.org/10.3390/cryst13040681 - 15 Apr 2023
Cited by 3 | Viewed by 2031
Abstract
We analyze the effect of growth on non-(100) surfaces resulting from incomplete planarization of spalled GaAs wafers on the defect structure of GaAs solar cell layers grown by hydride vapor phase epitaxy (HVPE). Controlled spalling of (100)-oriented GaAs has the potential to reduce [...] Read more.
We analyze the effect of growth on non-(100) surfaces resulting from incomplete planarization of spalled GaAs wafers on the defect structure of GaAs solar cell layers grown by hydride vapor phase epitaxy (HVPE). Controlled spalling of (100)-oriented GaAs has the potential to reduce substrate costs for III-V epitaxy; however, it creates regularly faceted surfaces that may complicate the growth of high-quality III-V optoelectronic devices. We leverage the anisotropic growth rate of HVPE to planarize these faceted GaAs substrates, reducing the surface roughness and degree of faceting. We observe degraded solar cell performance and material quality in sample areas where facets are not completely removed. We used dark lock-in thermography and photoluminescence to identify recombination in areas that were not fully planarized. We used cathodoluminescence to identify the presence of extended defects in these regions, which are correlated with bandgap fluctuations in the material. We hypothesize that these defects were created by strain from compositional fluctuations in ternary alloys grown on the faceted surfaces. This work elucidates the potential issues of solar cells grown on faceted surfaces and builds understanding toward realizing high performance III-V photovoltaics with the cost-reduction potential of controlled spalling. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

11 pages, 5768 KiB  
Article
Ultra-High-Speed Growth of GaAs Solar Cells by Triple-Chamber Hydride Vapor Phase Epitaxy
by Ryuji Oshima, Akio Ogura, Yasushi Shoji, Kikuo Makita, Akinori Ubukata, Shuuichi Koseki, Mitsuru Imaizumi and Takeyoshi Sugaya
Crystals 2023, 13(3), 370; https://doi.org/10.3390/cryst13030370 - 21 Feb 2023
Cited by 9 | Viewed by 2764
Abstract
In photovoltaic (PV) power generation, highly efficient III-V solar cells are promising for emerging mobile applications, such as vehicle-integrated PVs. Although hydride vapor phase epitaxy (HVPE) has received attention due to its lower fabrication costs, realization of high throughput performance while maintaining solar-cell [...] Read more.
In photovoltaic (PV) power generation, highly efficient III-V solar cells are promising for emerging mobile applications, such as vehicle-integrated PVs. Although hydride vapor phase epitaxy (HVPE) has received attention due to its lower fabrication costs, realization of high throughput performance while maintaining solar-cell characteristics using this growth method is essential. In this study, the effect of atmospheric-pressure triple-chamber HVPE growth conditions on GaAs solar-cell properties were carefully investigated in conjunction with defect analysis using deep-level transient spectroscopy (DLTS). Based on the analysis on GaAs reaction processes, the suppression of arsine thermal cracking in the HVPE hot-wall reactor was important to achieve fast GaAs growth using a low input V/III ratio. Moreover, the DLTS results revealed that the reduced input V/III ratio was effective in suppressing the generation of EL2 traps, which is a common GaAs midgap complex defect involving arsenic antisites. Although the EL2 trap density increased with the growth rate, the performance of GaAs solar cells that were grown under reduced arsine thermal cracking exhibited almost no considerable cell parameter deterioration at a growth rate of up to 297 μm/h. Consequently, a conversion efficiency of 24% with a high open-circuit voltage of 1.04 V was achieved for the cells that were grown at 200 μm/h. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

13 pages, 3138 KiB  
Article
Power Enhancement of 265 nm DUV-LED Flip-Chip by HVPE-AlN High-Temperature Annealing
by Wenkai Yue, Ruixuan Liu, Peixian Li, Xiaowei Zhou, Yang Liu, Bo Yang, Yingxiao Liu and Xiaowei Wang
Micromachines 2023, 14(2), 467; https://doi.org/10.3390/mi14020467 - 17 Feb 2023
Cited by 8 | Viewed by 2336
Abstract
In this paper, the X-ray diffraction full width at half the maximum (XRD FWHM) of a 3.5 µm-thick hydride vapor phase epitaxy-aluminum nitride (HVPE-AlN) (002) face after high-temperature annealing was reduced to 129 arcsec. The tensile strain in the HVPE-AlN samples gradually released [...] Read more.
In this paper, the X-ray diffraction full width at half the maximum (XRD FWHM) of a 3.5 µm-thick hydride vapor phase epitaxy-aluminum nitride (HVPE-AlN) (002) face after high-temperature annealing was reduced to 129 arcsec. The tensile strain in the HVPE-AlN samples gradually released with the increasing annealing temperature. When the annealing temperature exceeded 1700 °C, an aluminum oxynitride (AlON) region was generated at the contact interface between HVPE-AlN and sapphire, and the AlON structure was observed to conform to the characteristics of Al5O6N by high-resolution transmission electron microscopy (HRTEM). A 265 nm light-emitting diode (LED) based on an HVPE-AlN template annealed at 1700 °C achieved a light output power (LOP) of 4.48 mW at 50 mA, which was approximately 57% greater than that of the original sample. Full article
(This article belongs to the Special Issue Solid-State Quantum Materials and Device Systems)
Show Figures

Figure 1

16 pages, 63770 KiB  
Article
Investigation of OP-GaP Grown on OP-GaAs Templates Using Nondestructive Reciprocal Space Mapping
by Balaji Manavaimaran, Axel Strömberg, Vladimir L. Tassev, Shivashankar R. Vangala, Myriam Bailly, Arnaud Grisard, Bruno Gérard, Sebastian Lourdudoss and Yan-Ting Sun
Crystals 2023, 13(2), 168; https://doi.org/10.3390/cryst13020168 - 18 Jan 2023
Cited by 4 | Viewed by 2053
Abstract
Orientation-patterned gallium phosphide (OP-GaP) has been grown heteroepitaxially on OP gallium arsenide (GaAs) templates using hydride vapor phase epitaxy (HVPE). The effect of OP-GaAs template fabrication methods of epitaxial-inversion and wafer bonding on the heteroepitaxial OP-GaP growth has been investigated. OP-GaP layers with [...] Read more.
Orientation-patterned gallium phosphide (OP-GaP) has been grown heteroepitaxially on OP gallium arsenide (GaAs) templates using hydride vapor phase epitaxy (HVPE). The effect of OP-GaAs template fabrication methods of epitaxial-inversion and wafer bonding on the heteroepitaxial OP-GaP growth has been investigated. OP-GaP layers with a growth rate of up to 35 µm/h and excellent domain fidelity were obtained. The growth rate and the domain fidelity have been revealed/studied by scanning electron microscope (SEM). In addition, we demonstrate that the crystalline quality of the individual domains, namely, the substrate-oriented domains (ODs) and the inverted domains (IDs), can be investigated by high-resolution x-ray diffraction reciprocal space mapping (HRXRDRSM), which can also indicate the domain fidelity. Attempts to increase the growth rate and improve the domain fidelity by increasing the III and V group precursors resulted in either an increase in the growth rate in the OP-GaP layers grown on epitaxial inversion OP-GaAs template at the expense of the domain crystalline quality and fidelity or an improvement in the crystalline quality of the domains at the expense of the growth rate in the OP-GaP layers grown on wafer-bonded OP-GaAs templates. In the case of OP-GaP grown on OP-GaAs templates prepared by epitaxial inversion, the crystalline quality of the ODs is better than that of the IDs, but it shows that the quality of the inverted layer in the template influences the quality and fidelity of the grown domains. To the authors’ knowledge, exploitation of HRXRDRSM studies on OP-GaP to establish the crystalline quality of its individual domains (ODs and IDs) is the first of its kind. OP-ZnSe grown on OP-GaAs templates has also been included in this study to further emphasize the potential of this method. We propose from this study that once the growth rate is optimized from SEM studies, HRXRDRSM analysis alone can be used to assess the structural quality and to infer the domain fidelity of the OP structures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2717 KiB  
Article
Aero-TiO2 Prepared on the Basis of Networks of ZnO Tetrapods
by Vladimir Ciobanu, Veaceslav V. Ursaki, Sebastian Lehmann, Tudor Braniste, Simion Raevschi, Victor V. Zalamai, Eduard V. Monaico, Pascal Colpo, Kornelius Nielsch and Ion M. Tiginyanu
Crystals 2022, 12(12), 1753; https://doi.org/10.3390/cryst12121753 - 3 Dec 2022
Cited by 11 | Viewed by 2672
Abstract
In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures [...] Read more.
In this paper, new aeromaterials are proposed on the basis of titania thin films deposited using atomic layer deposition (ALD) on a sacrificial network of ZnO microtetrapods. The technology consists of two technological steps applied after ALD, namely, thermal treatment at different temperatures and etching of the sacrificial template. Two procedures are applied for etching, one of which is wet etching in a citric acid aqua solution, while the other one is etching in a hydride vapor phase epitaxy (HVPE) system with HCl and hydrogen chemicals. The morphology, composition, and crystal structure of the produced aeromaterials are investigated depending on the temperature of annealing and the sequence of the technological steps. The performed photoluminescence analysis suggests that the developed aeromaterials are potential candidates for photocatalytic applications. Full article
Show Figures

Figure 1

16 pages, 7199 KiB  
Article
Growth and Optical Properties of Ga2O3 Layers of Different Crystalline Modifications
by Andrey V. Osipov, Shukrillo Sh. Sharofidinov, Elena V. Osipova, Andrey V. Kandakov, Andrey Y. Ivanov and Sergey A. Kukushkin
Coatings 2022, 12(12), 1802; https://doi.org/10.3390/coatings12121802 - 23 Nov 2022
Cited by 6 | Viewed by 2220
Abstract
In the present work, a new method of growing layers of three main crystal modifications of Ga2O3, namely α-phase, ε-phase, and β-phase, with thickness of 1 µm or more was developed. The method is based on the use of [...] Read more.
In the present work, a new method of growing layers of three main crystal modifications of Ga2O3, namely α-phase, ε-phase, and β-phase, with thickness of 1 µm or more was developed. The method is based on the use of two approaches, namely a combination of Ga2O3 growth using the hydride vapor-phase epitaxy (HVPE) method and the use of a silicon crystal with a buffer layer of dislocation-free silicon carbide as a substrate. As a result, Ga2O3 gallium oxide layers of three major Ga2O3 crystal modifications were grown, namely, α-phase, ε-phase, and β-phase. The substrate temperatures and precursor flux values at which it is possible to grow only α-phase, only ε-phase, or only β-phase without a mixture of these phases were established. It was found that the metastable α- and ε-phases change into the stable β-phase when heated above 900 °C. Experimentally obtained Raman and ellipsometric spectra of α-phase, ε-phase, and β-phase of Ga2O3 are presented. The theoretical study of the Raman spectra and the dependences of dielectric function on photon energy for all three phases was carried out. The vibrations of Ga2O3 atoms corresponding to the main lines of the Raman spectrum of the α-phase, ε-phase, and β-phase were simulated by density functional methods. Full article
(This article belongs to the Special Issue Perspective Coatings for Optical Materials Modifications)
Show Figures

Figure 1

11 pages, 2913 KiB  
Article
Growth Mechanism of Semipolar AlN Layers by HVPE on Hybrid SiC/Si(110) Substrates
by Alexander A. Koryakin, Sergey A. Kukushkin, Andrey V. Osipov, Shukrillo Sh. Sharofidinov and Mikhail P. Shcheglov
Materials 2022, 15(18), 6202; https://doi.org/10.3390/ma15186202 - 6 Sep 2022
Cited by 6 | Viewed by 2056
Abstract
In this work, the growth mechanism of aluminum nitride (AlN) epitaxial films by hydride vapor phase epitaxy (HVPE) on silicon carbide (SiC) epitaxial layers grown on silicon (110) substrates is investigated. The peculiarity of this study is that the SiC layers used for [...] Read more.
In this work, the growth mechanism of aluminum nitride (AlN) epitaxial films by hydride vapor phase epitaxy (HVPE) on silicon carbide (SiC) epitaxial layers grown on silicon (110) substrates is investigated. The peculiarity of this study is that the SiC layers used for the growth of AlN films are synthesized by the method of coordinated substitution of atoms. In this growth method, a part of the silicon atoms in the silicon substrate is replaced with carbon atoms. As a result of atom substitution, the initially smooth Si(110) surface transforms into a SiC surface covered with octahedron-shaped structures having the SiC(111) and SiC(111¯) facets. The SiC(111)/(111¯) facets forming the angle of 35.3° with the original Si(110) surface act as “substrates” for further growth of semipolar AlN. The structure and morphology of AlN films are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), reflection high-energy electron diffraction (RHEED) and Raman spectroscopy. It is found that the AlN layers are formed by merged hexagonal microcrystals growing in two directions, and the following relation is approximately satisfied for both crystal orientations: AlN(101¯3)||Si(110). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the AlN(101¯3) diffraction peak averaged over the sample area is about 20 arcmin. A theoretical model explaining the presence of two orientations of AlN films on hybrid SiC/Si(110) substrates is proposed, and a method for controlling their orientation is presented. Full article
(This article belongs to the Special Issue Silicon Carbide: From Fundamentals to Applications (Volume II))
Show Figures

Graphical abstract

8 pages, 3736 KiB  
Article
Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE
by Qian Zhang, Xu Li, Jianyun Zhao, Zhifei Sun, Yong Lu, Ting Liu and Jicai Zhang
Micromachines 2021, 12(10), 1153; https://doi.org/10.3390/mi12101153 - 25 Sep 2021
Cited by 6 | Viewed by 2091
Abstract
We have investigated the effect of high-temperature nitridation and buffer layer on the semi-polar aluminum nitride (AlN) films grown on sapphire by hydride vapor phase epitaxy (HVPE). It is found the high-temperature nitridation and buffer layer at 1300 °C are favorable for the [...] Read more.
We have investigated the effect of high-temperature nitridation and buffer layer on the semi-polar aluminum nitride (AlN) films grown on sapphire by hydride vapor phase epitaxy (HVPE). It is found the high-temperature nitridation and buffer layer at 1300 °C are favorable for the formation of single (10–13) AlN film. Furthermore, the compressive stress of the (10–13) single-oriented AlN film is smaller than polycrystalline samples which have the low-temperature nitridation layer and buffer layer. On the one hand, the improvement of (10–13) AlN crystalline quality is possibly due to the high-temperature nitridation that promotes the coalescence of crystal grains. On the other hand, as the temperature of nitridation and buffer layer increases, the contents of N-Al-O and Al-O bonds in the AlN film are significantly reduced, resulting in an increase in the proportion of Al-N bonds. Full article
Show Figures

Figure 1

8 pages, 3395 KiB  
Article
Growth of Semi-Polar (101¯3) AlN Film on M-Plane Sapphire with High-Temperature Nitridation by HVPE
by Xu Li, Jianyun Zhao, Ting Liu, Yong Lu and Jicai Zhang
Materials 2021, 14(7), 1722; https://doi.org/10.3390/ma14071722 - 31 Mar 2021
Cited by 14 | Viewed by 2573
Abstract
Aluminum nitride (AlN) films were grown on the m-plane sapphire by high-temperature hydride vapor phase epitaxy (HVPE). The effect of high-temperature nitridation on the quality of AlN film was studied. The high-temperature nitridation is favorable for the formation of semi-polar single (10 [...] Read more.
Aluminum nitride (AlN) films were grown on the m-plane sapphire by high-temperature hydride vapor phase epitaxy (HVPE). The effect of high-temperature nitridation on the quality of AlN film was studied. The high-temperature nitridation is favorable for the formation of semi-polar single (101¯3) orientation AlN film, the quality of which shows strong dependence on the nitridation temperature. The full width at half maximum of X-ray diffraction for (101¯3) AlN film was only 0.343° at the optimum nitridation temperature of 1300 °C. It is found that the nano-holes were formed on the surface of substrates by the decomposition of sapphire in the process of high-temperature nitridation, which is closely related to the quality improvement of AlN. At the critical nitridation temperature of 1300 °C, the average size of the nano-holes is about 70 nm, which is in favor of promoting the rapid coalescence of AlN micro-grains in the early stages. However, the size of nano-holes will be enlarged with the further increase of nitridation temperature, which begins to play a negative role in the coalescence of AlN grains. As a result, the grain size will be increased and extended to the epilayer, leading to the deterioration of the AlN film. Full article
Show Figures

Figure 1

11 pages, 4978 KiB  
Article
In-Situ Preparation of GaN Sacrificial Layers on Sapphire Substrate in MOVPE Reactor for Self-Separation of the Overgrown GaN Crystal
by Sepideh Faraji, Elke Meissner, Roland Weingärtner, Sven Besendörfer and Jochen Friedrich
Crystals 2020, 10(12), 1100; https://doi.org/10.3390/cryst10121100 - 30 Nov 2020
Cited by 1 | Viewed by 3424
Abstract
GaN layers on sapphire substrates were prepared by using metal organic vapor phase epitaxy (MOVPE) combined with an in-situ H2 etching process for the purpose of later self-separation of thick GaN crystals produced by hydride vapor phase epitaxy (HVPE) on such substrates. [...] Read more.
GaN layers on sapphire substrates were prepared by using metal organic vapor phase epitaxy (MOVPE) combined with an in-situ H2 etching process for the purpose of later self-separation of thick GaN crystals produced by hydride vapor phase epitaxy (HVPE) on such substrates. The etching process results in deep pits and long voids that formed on the surface and along the lower interface between GaN and sapphire, respectively. The pits, which were investigated by SEM analysis, can be modified in their aspect ratio and density by controlling the etching parameters. Using a proper set of in-situ etching parameters, a seed layer with internal voids can be prepared, which is suitable for HVPE overgrowth and the self-separation process. The quality of the in-situ-etched seed GaN layer and overgrown GaN crystal were characterized by X-ray diffraction (XRD) and defect selective etching (DSE). With the aid of atomic force microscopy (AFM) in tapping mode, the interface morphology of the separated GaN crystal was analyzed. The crystal quality of the separated HVPE-GaN crystal is comparable to the crystal grown on untreated GaN MOVPE-seed, which did not separate from the sapphire substrate. The introduced technique to promote the crystal separation during the HVPE process has no obvious drawback on the quality of the grown GaN crystals. Using this technique, the self-separation occurs more gently due to a weakened interface between GaN/sapphire. The conventional separation from an untreated seed by pure thermomechanical action results in higher mechanical forces on the crystal and consequently much higher risk of crystal breakage. Full article
Show Figures

Figure 1

21 pages, 8089 KiB  
Review
Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors
by Abhinay Sandupatla, Subramaniam Arulkumaran, Ng Geok Ing, Shugo Nitta, John Kennedy and Hiroshi Amano
Micromachines 2020, 11(5), 519; https://doi.org/10.3390/mi11050519 - 20 May 2020
Cited by 24 | Viewed by 6239
Abstract
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of [...] Read more.
Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 1014/cm3) on low threading dislocation density (3.1 × 106/cm2) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (IR) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V. Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
Show Figures

Figure 1

26 pages, 6313 KiB  
Review
Review of GaN Thin Film and Nanorod Growth Using Magnetron Sputter Epitaxy
by Aditya Prabaswara, Jens Birch, Muhammad Junaid, Elena Alexandra Serban, Lars Hultman and Ching-Lien Hsiao
Appl. Sci. 2020, 10(9), 3050; https://doi.org/10.3390/app10093050 - 27 Apr 2020
Cited by 43 | Viewed by 12319
Abstract
Magnetron sputter epitaxy (MSE) offers several advantages compared to alternative GaN epitaxy growth methods, including mature sputtering technology, the possibility for very large area deposition, and low-temperature growth of high-quality electronic-grade GaN. In this article, we review the basics of reactive sputtering for [...] Read more.
Magnetron sputter epitaxy (MSE) offers several advantages compared to alternative GaN epitaxy growth methods, including mature sputtering technology, the possibility for very large area deposition, and low-temperature growth of high-quality electronic-grade GaN. In this article, we review the basics of reactive sputtering for MSE growth of GaN using a liquid Ga target. Various target biasing schemes are discussed, including direct current (DC), radio frequency (RF), pulsed DC, and high-power impulse magnetron sputtering (HiPIMS). Examples are given for MSE-grown GaN thin films with material quality comparable to those grown using alternative methods such as molecular-beam epitaxy (MBE), metal–organic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE). In addition, successful GaN doping and the fabrication of practical devices have been demonstrated. Beyond the planar thin film form, MSE-grown GaN nanorods have also been demonstrated through self-assembled and selective area growth (SAG) method. With better understanding in process physics and improvements in material quality, MSE is expected to become an important technology for the growth of GaN. Full article
(This article belongs to the Special Issue GaN-Based Light-Emitting Diodes)
Show Figures

Figure 1

Back to TopTop