Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Nobel Prize in Physics 2014. Available online: https://www.nobelprize.org/prizes/physics/2014/press-release/ (accessed on 18 August 2023).
- Nakamura, S.; Pearton, S.J.; Fasol, G. The Blue Laser Diode. Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. How we made the microLED. Nat. Electron. 2023, 6, 257. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager III, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.; Saito, Y.; Nanishi, Y. Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 2002, 80, 3967. [Google Scholar] [CrossRef]
- Kibria, M.G.; Nguyen, H.P.; Cui, K.; Zhao, S.; Liu, D.; Guo, H.; Trudeau, M.L.; Paradis, S.; Hakima, A.R.; Mi, Z. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. ACS Nano 2013, 7, 7886. [Google Scholar] [CrossRef] [PubMed]
- Mattila, T.; Nieminen, R.M. Point-defect complexes and broadband luminescence in GaN and AlN. Phys. Rev. B 1997, 55, 9571. [Google Scholar] [CrossRef]
- Schubert, E.F.; Goepfert, I.D.; Redwing, J.M. Evidence of compensating centers as origin of yellow luminescence in GaN. Appl. Phys. Lett. 1997, 71, 3224. [Google Scholar] [CrossRef][Green Version]
- Reshchikov, M.A.; Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
- Nakarmi, M.L.; Kim, K.H.; Zhu, K.; Lin, J.Y.; Jiang, H.X. Transport properties of highly conductive n-type Al-rich AlxGa1−xN (x ≥ 0.7). Appl. Phys. Lett. 2004, 85, 3769. [Google Scholar] [CrossRef]
- Morkoc, H. Comprehensive characterization of hydride VPE grown GaN layers and templates. Mater. Sci. Eng. 2001, 33, 135–207. [Google Scholar] [CrossRef]
- Nam, K.B.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. Deep impurity transitions involving cation vacancies and complexes in AlGaN alloys. Appl. Phys. Lett. 2005, 86, 222108. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; McNamara, J.D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Y.; Morkoç, H. Zero-phonon line and fine structure of the yellow luminescence band in GaN. Phys. Rev. B 2016, 94, 035201. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B. Mechanism of yellow luminescence in GaN at room temperature. J. Appl. Phys. 2017, 121, 065104. [Google Scholar] [CrossRef]
- Reshchikov, M.A. On the origin of the yellow luminescence band in GaN. Phys. Status Solidi B 2022, 2200488. [Google Scholar] [CrossRef]
- Van de Walle, C.G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851. [Google Scholar] [CrossRef]
- Stampfl, C.; Van de Walle, C.G. Doping of AlxGa1−xN. Appl. Phys. Lett. 1998, 72, 459. [Google Scholar] [CrossRef]
- Ahmad, H.; Engel, Z.; Matthews, C.M.; Lee, S.; Doolittle, W.A. Realization of homojunction PN AlN diodes. J. Appl. Phys. 2022, 131, 175701. [Google Scholar] [CrossRef]
- Arnaud, B.; Lebe, S.; Rabiller, P.; Alouani, M. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett. 2006, 96, 026402. [Google Scholar] [CrossRef]
- Sugino, T.; Tanioka, K.; Kawasaki, S.; Shirafuji, J. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn. J. Appl. Phys. 1997, 36 Pt 2, L463. [Google Scholar] [CrossRef]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 2009, 3, 591–594. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Osberghaus, O. Die isotopenhäufigkeit des bors. massenspektrometrische untersuchung der elektronenstoßprodukte von BF3 und BCl3. Zeitschrift Fuer Physik 1950, 128, 366. [Google Scholar] [CrossRef]
- Lunca-Popa, P.; Brand, J.I.; Balaz, S.; Rosa, L.G.; Boag, N.M.; Bai, M.; Robertson, B.W.; Dowben, P.A. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure. J. Phys. D App. Phys. 2005, 38, 1248. [Google Scholar] [CrossRef][Green Version]
- Nikolic, R.J.; Conway, A.M.; Reinhardt, C.E.; Graff, R.T.; Wang, T.F.; Deo, N.; Cheung, C.L. 6:1 aspect ratio silicon pillar based thermal neutron detector filled with 10B. Appl. Phys. Lett. 2008, 93, 133502. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.J.; Li, J.; Lin, J.Y.; Jiang, H.X. Hexagonal boron nitride: Epitaxial growth and device applications. Prog. Quantum. Electron. 2021, 76, 100302. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.J.; Li, J.; Lin, J.Y.; Jiang, H.X. High efficiency hexagonal boron nitride neutron detectors with 1 cm2 detection areas. Appl. Phys. Lett. 2020, 116, 142102. [Google Scholar] [CrossRef]
- Khatami, M.M.; Van de Put, M.L.; Vandenberghe, W.G. First-principles study of electronic transport in germanane and hexagonal boron nitride. Phys. Rev. B 2001, 104, 235424. [Google Scholar] [CrossRef]
- Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J.C.; Jung, J.; MacDonald, A.H.; Vajtai, R.; Lou, J.; et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, J.; Lindsay, L.; Cherns, D.; Pomeroy, J.W.; Liu, S.; Edgar, J.H.; Kuball, M. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2019, 2, 43. [Google Scholar] [CrossRef]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stephan, O.; Kociak, M.; Tizei, L.H.G.; Zobelli, A. Bright UV single photon emission at point defects in h-BN. Nano Lett. 2016, 16, 4317. [Google Scholar] [CrossRef]
- Vuong, T.Q.P.; Cassabois, G.; Valvin, P.; Ouerghi, A.; Chassagneux, Y.; Voisin, C.; Gil, B. Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride. Phys. Rev. Lett. 2016, 117, 097402. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37. [Google Scholar] [CrossRef]
- Weston, L.; Wickramaratne, D.; Mackoit, M.; Alkauskas, A.; Van de Walle, C.G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 2018, 97, 214104. [Google Scholar] [CrossRef]
- Majety, S.; Doan, T.C.; Li, J.; Lin, J.Y.; Jiang, H.X. Electrical transport properties of Si-doped hexagonal boron nitride epilayers. AIP Adv. 2013, 3, 122116. [Google Scholar] [CrossRef]
- Uddin, M.R.; Li, J.; Lin, J.Y.; Jiang, H.X. Probing carbon impurities in hexagonal boron nitride epilayers. Appl. Phys. Lett. 2017, 110, 182107. [Google Scholar]
- Grenadier, S.J.; Maity, A.; Li, J.; Lin, J.Y.; Jiang, H.X. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers. Appl. Phys. Lett. 2018, 112, 162103. [Google Scholar] [CrossRef]
- Oba, F.; Togo, A.; Tanaka, I.; Watanabe, K.; Taniguchi, T. Doping of hexagonal boron nitride via intercalation: A theoretical prediction. Phys. Rev. B 2010, 81, 075125. [Google Scholar] [CrossRef]
- Grenadier, S.J.; Maity, A.; Li, J.; Lin, J.Y.; Jiang, H.X. Effects of unique band structure of h-BN probed by photocurrent excitation spectroscopy. Appl. Phys. Express 2022, 15, 051005. [Google Scholar] [CrossRef]
- Alemoush, Z.; Hossain, N.K.; Tingsuwatit, A.; Almohammad, M.; Li, J.; Lin, J.Y.; Jiang, H.X. Toward achieving cost-effective hexagonal BN semi-bulk crystals and BN neutron detectors via halide vapor phase epitaxy. Appl. Phys. Lett. 2023, 122, 012105. [Google Scholar] [CrossRef]
- McKay, M.A.; Li, J.; Lin, J.Y.; Jiang, H.X. Anisotropic index of refraction and structural properties of hexagonal boron nitride epilayers probed by spectroscopic ellipsometry. J. Appl. Phys. 2020, 127, 0531032. [Google Scholar] [CrossRef]
- Fiore, S.; Klinkert, C.; Ducry, F.; Backman, J.; Luisier, M. Influence of the hBN dielectric layers on the quantum transport properties of mos2 transistors. Materials 2022, 15, 1062. [Google Scholar] [CrossRef]
- Wang, Q.W.; Li, J.; Lin, J.Y.; Jiang, H.X. Probing the surface oxidation process in hexagonal boron nitride epilayers. AIP Adv. 2020, 10, 025213. [Google Scholar] [CrossRef]
- Vokhmintse, A.; Weinstein, I.; Zamyatin, D. Electron-phonon interactions in subband excited photoluminescence of hexagonal boron nitride. J. Lumines 2019, 208, 363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemoush, Z.; Tingsuwatit, A.; Li, J.; Lin, J.; Jiang, H. Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy. Crystals 2023, 13, 1319. https://doi.org/10.3390/cryst13091319
Alemoush Z, Tingsuwatit A, Li J, Lin J, Jiang H. Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy. Crystals. 2023; 13(9):1319. https://doi.org/10.3390/cryst13091319
Chicago/Turabian StyleAlemoush, Zaid, Attasit Tingsuwatit, Jing Li, Jingyu Lin, and Hongxing Jiang. 2023. "Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy" Crystals 13, no. 9: 1319. https://doi.org/10.3390/cryst13091319
APA StyleAlemoush, Z., Tingsuwatit, A., Li, J., Lin, J., & Jiang, H. (2023). Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy. Crystals, 13(9), 1319. https://doi.org/10.3390/cryst13091319