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Abstract: We analyze the effect of growth on non-(100) surfaces resulting from incomplete planariza-
tion of spalled GaAs wafers on the defect structure of GaAs solar cell layers grown by hydride
vapor phase epitaxy (HVPE). Controlled spalling of (100)-oriented GaAs has the potential to reduce
substrate costs for III-V epitaxy; however, it creates regularly faceted surfaces that may complicate the
growth of high-quality III-V optoelectronic devices. We leverage the anisotropic growth rate of HVPE
to planarize these faceted GaAs substrates, reducing the surface roughness and degree of faceting.
We observe degraded solar cell performance and material quality in sample areas where facets are
not completely removed. We used dark lock-in thermography and photoluminescence to identify
recombination in areas that were not fully planarized. We used cathodoluminescence to identify the
presence of extended defects in these regions, which are correlated with bandgap fluctuations in the
material. We hypothesize that these defects were created by strain from compositional fluctuations
in ternary alloys grown on the faceted surfaces. This work elucidates the potential issues of solar
cells grown on faceted surfaces and builds understanding toward realizing high performance III-V
photovoltaics with the cost-reduction potential of controlled spalling.

Keywords: photovoltaics; spalling; III-V; crystalline defects; HVPE; device characterization

1. Introduction

III-V devices employ high-quality epitaxial thin films typically deposited on atom-
ically smooth, polished, ~(100)-oriented substrates. For large area devices, especially
photovoltaics, a single use of these polished substrates contributes substantially to the
device cost. Reusing a single substrate 10 times or more with minimal repreparation stands
to reduce substrate costs by over 50% [1,2]. Cost reductions in materials’ growth may be
possible by leveraging the high throughput potential of HVPE growth [1,3–5], thereby bene-
fitting existing III-V markets, such as space PV, micro-LEDs, and photonics, and potentially
enabling the entrance of III-V materials into other markets, such as terrestrial PV. Substrate
reuse also confers technical advantages to III-V PV by removing the active device from
the substrate, which is far thicker than necessary due to the high absorption coefficients of
III-V materials [6]. This allows the use of back reflectors, which can enhance photovoltaic
performance [7], leading to higher efficiency and enabling better radiation tolerance [8].
Additionally, the reduced thickness and mass enable flexible cells with high specific power,
which are highly desirable traits for aerospace applications.

The current industrial standard for substrate reuse, epitaxial lift-off (ELO), has achieved
some degree of substrate reuse, but further cost reduction is limited by low throughput
of the lateral etching step and the periodic need for repolishing [2,9]. Alternative strate-
gies for device lift-off and subsequent substrate reuse include controlled spalling [10],
laser lift-off [11], multiple ELO [12], porous substrates [13–17], and remote epitaxy [18].
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Controlled spalling is a promising substrate reuse technique with the potential to exfo-
liate devices at high throughput, leaving behind a chemically pure fracture surface for
regrowth [10,19,20]. The spalling fracture for (100)-oriented GaAs substrates produces a
regularly corrugated surface of >5 µm peak-to-trough height facets [21,22]. Recent advances
in spalling techniques have enabled predominantly smooth surfaces; however, faceted
regions can still remain and are largely unavoidable without fracture-guiding layers due
to the orientation of favorable fracture planes [23,24]. Ideally, the fracture surfaces can be
grown on directly without the added cost related to external planarization, e.g., chemo-
mechanical polishing. However, the faceted surface presents a challenge for the direct use
of spalled substrates for the growth of high-efficiency III-V solar cells, which have tradi-
tionally employed flat epilayers. Other work has investigated solar cells on non-pristine
growth surfaces [9,15,16,25–28], and has observed that some morphological spalling defects
diminish cell performance [29,30]. However, the impact, if any, of these particular faceted
GaAs surfaces on the quality of subsequently grown materials and devices is unexplored.

In this work, we utilized planarizing GaAs buffer layers described in a prior work [31]
to smooth the faceted surfaces of spalled GaAs substrates. Then we grew solar cells
with planarizing buffer layers just thick enough to planarize the predominant facet size.
However, some regions on the wafer showed incomplete planarization after the growth,
resulting in localized areas where facet troughs were still visible. We evaluated solar cell
devices containing these regions of incomplete planarization to assess the impact of these
residual facets on device performance and determine whether complete planarization is
necessary as part of a potential process flow that includes spalling. We used a variety of
device- and micro-scale characterization techniques to locate and analyze the impact of
incomplete planarization on material quality and device performance and correlated this
with the post-growth surface morphology.

2. Experimental Section

Faceted substrates were produced by controlled spalling of n-type, (100)-oriented GaAs
wafers with a 6◦ offcut toward (111)A using an electroplated nickel stressor layer. The nickel
stressor layer was deposited on full 2” wafers using a 2-electrode electroplating system in
current-controlled mode (galvanostatic), following procedures described in [21,32]. This
system used a Ni metal electrode in a Ni-P bath with 0.6 M NiCl2 × 6H2O and 5 mM H3PO3.

Wafers were then spalled in the [0
−
11] direction (perpendicular to the 6◦A offcut) to yield a

faceted surface consisting of nominally {n11}B planes with roughly 6 µm peak-to-trough
height [23].

A custom-built, two-growth-chamber dynamic HVPE reactor, described elsewhere [33],
was used for all growths. Upright, rear heterojunction GaAs solar cells were grown on
both spalled (faceted) and polished epi-ready substrates using conditions and structures
similar to those reported in [34]. The 2.5 µm n-GaAs base layer was doped with Se
to 1.5 × 1017 cm−3 and the p-GaInP emitter was doped to ~3 × 1019 cm−3 with Zn.
A ~25 nm GaInP:Se window layer provided front surface passivation, and a heavily Se-
doped GaAs layer served as the front contact layer. The same cell structure was grown on
the two substrates: spalled with facets and a traditional, planar epi-ready substrate. Both
substrates were cleaved into ~2 cm × 2 cm pieces and then cleaned with a one minute 2:1:10
NH4OH:H2O2:H2O etch to remove cleaving debris. The overall structure is depicted in
Figure 1 on the spalled substrate. The planarization layer was grown using 15 sccm of GaCl
and 50 sccm of AsH3, as reported in [31], to fill the trenches and resulted in approximately
5 µm of material measured from the tops of the facet peaks. The planarization layer also
acted as a lateral conduction layer (LCL) for back contact of the cell. The control devices
on the epi-ready substrate were grown with a nominally 5 µm thick LCL to mimic the test
structure. Both LCL layers were Zn-doped to ~1 × 1018 cm−3.
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Figure 1. Structure of an upright rear heterojunction GaAs solar cell on a planarized spalled GaAs
wafer. The facets and cell structure are drawn to scale. Devices on epi-ready GaAs use the same solar
cell structure with a ~5 µm thick GaAs LCL grown prior to the cell stack.

Samples were processed into 0.25 cm2 photovoltaic devices using standard lithography
techniques. Laser confocal optical profilometry was conducted on these samples before and
after growth to measure the surface morphology. Dark lock-in thermography (DLIT) was
conducted on select devices under forward and reverse bias conditions. Photoluminescence
(PL) maps were acquired on select devices that were pumped by a 532 nm light source.
Cross-sectional SEM micrographs were acquired from select samples. Electron channeling
contrast imaging (ECCI) was conducted on these cross-sections using methods reported
in [35]. Cathodoluminescence (CL) and electron-beam-induced current (EBIC) measure-
ments were performed on a JEOL JSM 7600 field emission scanning electron microscope
(FESEM) operated with an accelerating voltage of 5 kV and beam current of 0.4 nA and
1.4 nA for CL and EBIC analyses, respectively. CL spectrum per pixel mapping data was
acquired using a Horiba H-CLUE system equipped with a Si CCD array. Quantitative EBIC
images were acquired with a Mighty EBIC system from Ephemeron Labs.

3. Results

Spalled GaAs wafers result in faceted surfaces with peak-to-trough heights of roughly
6 µm that are inclined at an average angle of ~32◦ to the [100], indicating that they are
likely comprised of a combination of {211}B and {311}B planes, as we observed in other
spalled samples [12]. We refer to this facet surface as {n11}, for accuracy and simplicity.
We grew upright rear heterojunction solar cells with the planarization layer, as described
above, on spalled GaAs. After growth, these cells exhibit predominantly specular surfaces
that have a typical Sq roughness of ~40 nm in 100 µm × 100 µm sampled areas as measured
with an optical profilometer. Figure 2 shows optical profilometry height maps that indicate
the specular areas have no remaining {n11} facets and a nominally (100) surface with a
scalloped morphology. The facets are effectively removed and the morphology is flat
having no inclination angles larger than a few degrees. However, Figure 2b shows that
there are areas of the sample with remaining faceted troughs of a few microns in height.
Here, we measure an Sq of ~500 nm in 100 µm × 100 µm sampled areas. We define these
cases as ‘complete planarization’ for that of Figure 2a and ‘incomplete planarization’ for
that of Figure 2b.
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solar cell growth for the incomplete planarization case, whereas they are removed in the 
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ure 2b that the facets underlying the incompletely planarized regions were slightly larger, 
which likely means that more planarization growth is necessary to completely remove the 
facets. Non-uniformities in the spall and/or the electroplated Ni stressor layer likely ac-
count for this slight variance in facet heights. As such, the planarizing buffer layer, which 
we targeted to planarize slightly smaller facets, did not accomplish complete planariza-
tion in certain areas. 

 
Figure 3. (a) Line profiles for as-spalled and as-grown solar cell surfaces. Profiles are separated by 
arbitrary height for viewing clarity. (b) Distribution of angles of the surface normal to the [100]. 

Figure 2. Optical profilometry height maps of solar cell surfaces for the case of (a) complete and
(b) incomplete planarization.

Figure 3a compiles line scans from optical profilometry for complete and incomplete
planarization cases, and for the as-spalled surface before and after a 1 min substrate
preparation etch in 2:1:10 NH4OH:H2O2:H2O. The substrate preparation etch rounds out
the valleys, but contributes little to the overall planarization, as shown by the green profile
in Figure 3a. Some of the original faceted troughs in the as-spalled surface persist after
the solar cell growth for the incomplete planarization case, whereas they are removed in
the complete planarization case. We can infer from the wider spacing between troughs
in Figure 2b that the facets underlying the incompletely planarized regions were slightly
larger, which likely means that more planarization growth is necessary to completely
remove the facets. Non-uniformities in the spall and/or the electroplated Ni stressor layer
likely account for this slight variance in facet heights. As such, the planarizing buffer
layer, which we targeted to planarize slightly smaller facets, did not accomplish complete
planarization in certain areas.
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We measured the distribution of surface inclination angles relative to the surface
normal by fitting local planes through each point in optical height maps similar to those
in Figure 2. A ~2 µm wide plane was fitted to the local data around each pixel for noise
filtration. Figure 3b plots the distribution of the absolute value of the inclination angle, θ,
of the surface normal from [100]. Prior to planarizing growth, the as-spalled surface has
facets that are predominantly inclined at ~32◦. Some higher angle features are present and
comprise a few % of the total inclination angle content (note the log scale in Figure 3b).
The as-spalled surface after etching increases the occurrence of inclinations below 10◦ by
rounding out the valleys. After planarizing growth, we observe no inclination angles
greater than a few degrees for the complete planarization case; however, the incomplete
planarization case has an appreciable amount of features inclined up to 30◦ from the surface
normal and is far different from the completely planarized surface.

We used solar cell devices to understand the impact of incomplete planarization on
material quality. Solar cells are highly sensitive to crystalline defects over a large area,
making them a good indicator of potential problems that occurred during the growth. We
fabricated solar cells on a spalled wafer and compared their performance to those grown
on an epi-ready substrate. We chose a particular device grown on spalled GaAs that had
both areas of complete planarization (as shown in Figure 2a) and incomplete planarization
(as shown in Figure 2b) to analyze their spatial impact on the cell performance and material
quality. Figure 4 shows the illuminated and dark J-V curves of devices grown on spalled
and epi-ready substrates without an anti-reflection coating. The device grown on the epi-
ready substrate shows fairly typical performance for this structure. The partially planarized
device, however, shows reduced performance in all key metrics. Short circuit current
density, JSC, or the value where the curve crosses the y-axis, decreases by ~0.8 mA/cm2,
which indicates less photocurrent is produced. Open circuit voltage, VOC, or the voltage
at which the curve crosses the x-axis, also decreases by ~60 mV, which indicates higher
non-radiative recombination current. These decreases result in a >2% drop in absolute
efficiency compared to the control. We then examined the J-V characteristic in the dark
to better understand the loss pathways, in particular the VOC and fill factor reduction, of
the partially planarized device. Figure 4b shows both devices have similar slopes, which
correspond to a diode with ideality of 2. The dark J-V otherwise shows no shunt or series
resistance signatures. These devices are limited by a J02 recombination current, which
typically corresponds to Shockley–Read–Hall recombination within the depletion region.
Overall, the partially planarized device has a ~500× higher J02 dark current compared to
the control. This dark current increase suggests that a Shockley–Read–Hall recombination
pathway in the depletion region is elevated in the incomplete planarization case [36], which
accounts for the loss of ~60 mV in VOC.
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We used DLIT and PL to assess the impact that the areas of incomplete planarization
have on the device under test. Figure 5 shows a device grown on spalled GaAs as observed
by both DLIT at 20 mA/cm2 forward bias current and PL. We correlated a region of
incomplete planarization (Figure 5b, circled in red) to a bright spot in DLIT and dark lines in
PL. These indicate local heating due to high current flow and non-radiative recombination in
that area, respectively. The location of these spots correlates with the incomplete planarized
area; thus, we infer that the increased dark current and reduced photocurrent in the J-V
curve originate from regions of incomplete planarization. Both the reduced photocurrent
and increased dark current may be the result of extended defects in the active region of the
solar cell [37].
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Figure 5. (a) DLIT and (b) PL images of a GaAs solar cell grown on partially planarized spalled
wafers. These DLIT images were taken at a forward bias current of 20 mA/cm2. The blue and red
circles in (b) denote complete and incomplete planarized regions, respectively. This device was
cleaved approximately through the green dashed line for cross-sectional analysis.

We investigated the extent of the incomplete planarization within the device by imag-
ing cross-sections of representative areas in this cell. Figure 6 shows SEM micrographs of
cross-sections of completely and incompletely planarized areas, from the areas marked with
blue and red circles in Figure 5b, respectively, indicating different junction (base/emitter
interface) shapes. Figure 6a shows a reasonably flat junction and top surface; however, in
Figure 6b, we observe that the junction and top surface in this region are not planar. It is
apparent in Figure 6b that the GaAs base layer, which used different growth conditions
than the planarization LCL layer, did not contribute to planarization, as expected from
the growth conditions [31]. Thus, the top surface has essentially the same morphology
that is present at the junction. As such, the top surface morphology presented in Figure 2
can gauge the morphology of the junction. We can use the dark J-V data to determine if
this non-planar top surface morphology affects the window. Poor passivation, due to a
missing or disrupted window layer, would increase the J01 substantially. We do not observe
J01-limited dark current behavior that would be consistent with poor front interfacial passi-
vation; thus, we infer the thin window layer at the non-planar top surface is not disrupted.
We also do not observe any bright spots in DLIT under reverse bias (not shown) that would
indicate the presence of a simple shunt. Given the J02-limited dark current behavior, it is
plausible that the dopant or defect concentrations in the depletion region may be altered by
the non-planar growth at the junction.
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Figure 6. Secondary electron images of cross-sections cleaved through regions of (a) complete (blue
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in the same locations, which indicate the position of the junction.

First, we investigated the depletion region using electron-beam-induced current (EBIC).
Figure 6c,d show EBIC images of regions with and without complete planarization. We
observe a thin bright line of high EBIC signal, which stems from the electric field of the
depletion region. All other regions of these images are likely limited by recombination at
the surface of the unpassivated cross-section. The depletion region appears conformal and
effectively the same thickness in all cases, without disruptions as observed in other cells
grown on non-planar surfaces [29].

Next, we conducted CL to look for extended defects near the junction on the µm-scale.
Similar to the PL, regions that contain a large degree of non-radiative recombination (e.g.,
dislocations) show up as dark lines or spots in CL images. Figure 7 summarizes the CL
intensity images in both the complete and incomplete planarization areas in both cross-
section and plan view. Note that the GaInP signal is shown separately below Figure 7a,b.
Figure 7a,c shows the completely planarized region, which exhibits a mostly flat intensity
signal, except for a slight increase in intensity over the planarized trench. However, the
incompletely planarized case, shown in Figure 7b,d, shows dark features in the GaAs base
layer in both orientations. The cross-section shows locally reduced CL emission centered in
the trench, extending upward from the GaInP emitter through the entire GaAs base. The
bright features within the incompletely planarized trench also appear in the plan view
SE images, suggesting surface topology accounts for some of this contrast. Nevertheless,
the cross-sectional CL (see the line profile in Figure 7b) suggests that the emission around
these defects is increased. In plan view, we observe localized dark features aligned along
the incompletely planarized trench. The extension of these dark defects from emitter to
the top surface and their localized nature in plan view suggests they are likely threading
dislocations (TDs). We calculated an overall density of TDs of ~1–2 × 106 cm−2 from the
plan view CL images, although they are clearly aligned to the trench and not uniformly
distributed. We did not detect any TDs in the images in the completely planarized region.
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This TD density was shown to decrease the VOC by 50–70 mV in similar GaAs solar cells [37],
which correlates well with the 60 mV VOC decrease and J02 increase observed in our solar
cells. Recombination will likely be higher near the trenches and lower between trenches
due to the clustered distribution of the TDs, leading to dark lines in PL near the trenches,
such as those observed in Figure 5b.
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One potential cause of dislocation generation during growth is strain from lattice mis-
match related to compositional fluctuations in the material. We probed for compositional
fluctuation using spectrally resolved CL, which indicates the emission energy stimulated
from a given area and is directly correlated with the local bandgap. Figure 8a,b detail the
peak emission energy of the cross-sectional CL images (Figure 7a,b). Here, we observe that
the peak emission energy in the GaInP emitter shifts ~40 meV higher in the incomplete
planarization case. We also used ECCI in cross-section to investigate any structural de-
fects. Figure 8c shows a slight contrast underneath the GaInP emitter but very little at the
junction (base/emitter interface). Figure 8d reveals a stronger contrast on both sides of
the emitter, as well as a few features with faint localized bright/dark contrast that could
be core signatures of crystalline defect(s) extending from the junction through the GaAs
base. This contrast is not visible in conventional SEM imaging modes; therefore, strain is
the most likely origin for the ECCI contrast [38].
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4. Discussion

Our analysis shows that the decreased solar cell device performance results from
the presence of dislocations in the regions with incomplete planarization and residual
faceting. The CL and ECCI data offer some clues as to the mechanism by which these
defects formed. Cross-sectional CL reveals a blueshift in peak emission energy in both the
GaAs base and the GaInP emitter. The distribution of the blueshift in CL and strain in ECCI
around and above the non-(100) regions of the GaInP emitter suggest that it is the source
of the strain. It is plausible that GaInP growth on {n11}B planes will result in different In
and Ga incorporation rates relative to those on (100) due to possible variations in surface
adsorption energy, surface reaction rates, or both, similar to observations of Ga-rich GaInP
growth by OMVPE on {111}B surfaces [39]. Indeed, the increased GaInP bandgap on the
facets implies that it is Ga-rich and that Ga incorporation is locally enhanced on the {n11}B
facets. By extension, this leads to a local deviation of the GaInP lattice constant from that of
the GaAs substrate (i.e., lattice mismatch) creating tensile strain. To counteract this strain,
the GaAs surrounding the non-(100) portions of the GaInP emitter is in slight compressive
strain, leading to a blueshift in the GaAs CL emission. This happens because the tensile
GaInP, which is strained to a smaller lattice constant, exerts a shear stress on the GaAs. It
is also interesting to note that these particular GaInP layers planarize, likely by having a
{n11} growth rate that is faster than (100), similar to what we observe in GaAs [31]. This is
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plausible given prior reports that demonstrate faster GaInP growth on {n11}, depending on
growth parameters and growth technique [40].

While both incomplete and complete planarization regions have some degree of strain
around non-(100) interfaces, only the incomplete planarization case exhibits dislocations
and decreased device performance. The spectrally resolved CL data provide clues as to
why. The bandgap fluctuation of 40 meV in the GaInP in the incomplete planarization
case implies a composition of Ga0.55In0.45P, ~3.5% higher than the lattice-matched com-
position [41], which would grow with a lattice strain of ~0.13%. The equilibrium critical
thickness, or thickness at which it becomes energetically favorable to relieve epilayer strain
by the presence of dislocations, is ~100 nm for this strain [42]. In the fully planarized case
the GaInP composition is only Ga0.53In0.47P, implying a strain of only 0.05% and a critical
thickness of ~300 nm. The GaInP thickness peaks at ~600 nm in the trench in this case,
about 2× the critical thickness; however, dislocation generation may still be unlikely at
this thickness given other factors that delay dislocation generation beyond equilibrium
critical thickness [43]. The incomplete planarization case has GaInP that is >10× greater
than its critical thickness, which implies that dislocation generation will occur. Therefore,
the increased strain and the fact that the volume of non-planar GaInP growth is much
higher, as seen in Figure 8, suggest that there is a significantly higher probability of disloca-
tion nucleation in the non-planarized case. Furthermore, GaAs nucleated on this strained
GaInP encounters an abrupt change in strain, which could also nucleate dislocations. In
the fully planarized case, both the lower thickness of GaInP grown on facets and the less
abrupt change in strain at the base/emitter interface explain the lack of the formation of
extended defects.

These results imply that there is a critical level of planarization that must be reached
to enable defect-free device growth. We cannot yet estimate a threshold of inclination angle
beyond which these defects are present. However, it seems likely that GaInP or any non-
binary alloy, which potentially have growth orientation-dependent composition [39], will
introduce mismatch strain when grown on non-(100) surfaces, creating a higher potential
for the formation of extended defects. As described earlier, the top surface morphology
presented in Figure 2 can gauge the morphology beneath non-planarizing layers, such as
the GaAs base, and in turn, the likelihood that extended defects were created at the junction.
This observation provides a guideline for growing cells on faceted surfaces, namely that it
is beneficial for the surface to be fully planar before the deposition of non-binary alloys.
Indeed, we expect that more planarization growth in this particular demonstration would
planarize the facets. Other growth techniques and substrate reuse paradigms might not
be able to planarize all faceted features due to practical limitations of growth time and
material usage necessary to planarize facets of a given size. Thus it is important to consider
careful cell design that avoids non-binary alloys on large faceted surfaces.

5. Conclusions

We demonstrate that incompletely planarized spalled surfaces can degrade material
quality in subsequently grown solar cells. Specifically, GaInP grown on large non-(100)
facets yields extended defects that increase dark current in regions where planarization
is incomplete. We correlate growth surfaces with a prevalence of high inclination angles
to this underlying degradation mechanism. Solar cells with these regions of incomplete
planarization have reduced VOC, which can be fully accounted for by the approximate
density of TDs that we observe in plan view CL. This results in locally reduced PL emission,
higher dark current, and an overall efficiency loss of ~2% absolute. This work suggests
extra care will be necessary for the design and production of solar cells on spalled substrates
when it is not possible to remove all of the facets. These investigations into the mechanisms
of device degradation will ultimately enable high-performing III-V PV on spalled substrates.
This advancement, when combined with low-cost epitaxy by HVPE, provides a promising
route to low-cost III-V PV.
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