Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (829)

Search Parameters:
Keywords = hydraulic resistances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2835 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 - 2 Aug 2025
Viewed by 216
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Vibratory Pile Driving in High Viscous Soil Layers: Numerical Analysis of Penetration Resistance and Prebored Hole of CEL Method
by Caihui Li, Changkai Qiu, Xuejin Liu, Junhao Wang and Xiaofei Jing
Buildings 2025, 15(15), 2729; https://doi.org/10.3390/buildings15152729 - 2 Aug 2025
Viewed by 189
Abstract
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. [...] Read more.
High-viscosity stratified strata, characterized by complex geotechnical properties such as strong cohesion, low permeability, and pronounced layered structures, exhibit significant lateral friction resistance and high-end resistance during steel sheet pile installation. These factors substantially increase construction difficulty and may even cause structural damage. This study addresses two critical mechanical challenges during vibratory pile driving in Fujian Province’s hydraulic engineering project: prolonged high-frequency driving durations, and severe U-shaped steel sheet pile head damage in high-viscosity stratified soils. Employing the Coupled Eulerian–Lagrangian (CEL) numerical method, a systematic investigation was conducted into the penetration resistance, stress distribution, and damage patterns during vibratory pile driving under varying conditions of cohesive soil layer thickness, predrilled hole spacing, and aperture dimensions. The correlation between pile stress and penetration depth was established, with the influence mechanisms of key factors on driving-induced damage in high-viscosity stratified strata under multi-factor coupling effects elucidated. Finally, the feasibility of predrilling techniques for resistance reduction was explored. This study applies the damage prediction model based on the CEL method to U-shaped sheet piles in high-viscosity stratified formations, solving the problem of mesh distortion in traditional finite element methods. The findings provide scientific guidance for steel sheet pile construction in high-viscosity stratified formations, offering significant implications for enhancing construction efficiency, ensuring operational safety, and reducing costs in such challenging geological conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Temporal Deformation Characteristics of Hydraulic Asphalt Concrete Slope Flow Under Different Test Temperatures
by Xuexu An, Jingjing Li and Zhiyuan Ning
Materials 2025, 18(15), 3625; https://doi.org/10.3390/ma18153625 - 1 Aug 2025
Viewed by 195
Abstract
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, [...] Read more.
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, and 70 °C. By applying nonlinear dynamics theory, the temporal evolution of slope flow deformation and its nonlinear mechanical characteristics under varying temperatures were thoroughly analyzed. Results indicate that the thermal stability of hydraulic asphalt concrete is synergistically governed by the phase-transition behavior between asphalt binder and aggregates. Temporal evolution of slope flow exhibits a distinct three-stage pattern as follows: rapid growth (0~12 h), where sharp temperature rise disrupts the primary skeleton of coarse aggregates; decelerated growth (12~24 h), where an embryonic secondary skeleton forms and progressively resists deformation; stabilization (>24 h), where reorganization of coarse aggregates is completed, establishing structural equilibrium. The thermal stability temperature influence factor (δ) shows a nonlinear concave growth trend with increasing test temperature. Dynamically, this process transitions sequentially through critical stability, nonlinear stability, period-doubling oscillatory stability, and unsteady states. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

20 pages, 8878 KiB  
Article
Identification Method for Resistance Coefficients in Heating Networks Based on an Improved Differential Evolution Algorithm
by Enze Zhou, Yaning Liu, Minjia Du, Junli Yu and Wenxiao Xu
Buildings 2025, 15(15), 2701; https://doi.org/10.3390/buildings15152701 - 31 Jul 2025
Viewed by 159
Abstract
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, [...] Read more.
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, this paper proposes an Improved Differential Evolution Algorithm (SDEIA) incorporating chaotic mapping, adaptive mutation and crossover strategies, and an immune mechanism. Furthermore, a multi-constrained identification model is constructed based on Kirchhoff’s laws. Validation with actual engineering data demonstrates that the proposed method achieves a lower average relative error in resistance coefficients and exhibits a more concentrated error distribution. SDEIA provides a high-precision tool for multi-heat-source networking and dynamic regulation in heating systems, facilitating low-carbon and intelligent upgrades. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 8070 KiB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 222
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 350
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

18 pages, 11176 KiB  
Article
Impact Mechanical Properties of Magnesium Alloy Structures with Annularly Distributed Multi-Sphere Point Contacts
by Xiaoting Sun, Guibo Yu, Qiao Ma, Yi Wang and Wei Wang
Crystals 2025, 15(7), 665; https://doi.org/10.3390/cryst15070665 - 21 Jul 2025
Viewed by 243
Abstract
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An [...] Read more.
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An annularly distributed multi-sphere point contact structure was designed and fabricated on a magnesium alloy substrate based on the Hertz contact theory. The accuracy of the finite element numerical model, constructed using Abaqus/Explicit, was verified through hydraulic impact tests. The impact mechanical properties of the structure were studied by analyzing the influence of the number, diameter, and cavity radius of hemispheres using an experimentally verified finite element model. The axial and radial deformations of the structure were compared and analyzed. The research findings indicate that the deformation and impact resistance of the structure can be greatly influenced by increasing the number of hemispheres, enlarging the hemisphere diameter, and incorporating internal cavities. Specifically, with 6 hemispheres, each with a diameter of Φ 6 mm and a cavity radius of R1.5 mm, the axial and radial deformations are only 1.03 mm and 3.02 mm, respectively. The contact area of a single hemisphere is 7.16 mm2. The study offers new perspectives on choosing buffer structures in high-impact environments. Full article
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Drag Reduction and Efficiency Enhancement in Wide-Range Electric Submersible Centrifugal Pumps via Bio-Inspired Non-Smooth Surfaces: A Combined Numerical and Experimental Study
by Tao Fu, Songbo Wei, Yang Gao and Bairu Shi
Appl. Sci. 2025, 15(14), 7989; https://doi.org/10.3390/app15147989 - 17 Jul 2025
Viewed by 240
Abstract
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was [...] Read more.
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was employed: a 3D CFD model with the k-ω turbulence model analyzed oil–water flow (1:9 ratio) to identify optimal dimple placement, while parametric studies tested diameters (0.6–1.2 mm). Experimental validation used 3D-printed prototypes. Results revealed that dimples on the pressure surface trailing edge reduced boundary layer separation, achieving a 12.98% head gain and 8.55% efficiency improvement at 150 m3/d in simulations, with experimental tests showing an 11.5% head increase and 4.6% efficiency gain at 130 m3/d. The optimal dimple diameter (0.9 mm, 2% of blade chord) balanced performance and manufacturability, demonstrating that bio-inspired surfaces improve ESP efficiency. This work provides practical guidelines for deploying drag reduction technologies in petroleum engineering, with a future focus on wear resistance in abrasive flows. Full article
Show Figures

Figure 1

21 pages, 1518 KiB  
Article
Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type
by Gregorio Gullo, Simone Barbera, Antonino Cannizzaro, Manuel Scarano, Francesco Larocca, Valentino Branca and Antonio Dattola
Plants 2025, 14(14), 2199; https://doi.org/10.3390/plants14142199 - 16 Jul 2025
Viewed by 248
Abstract
This study investigated the influence of cane diameter on vegetative, productive, and physiological behaviors in Actinidia chinensis, cv. Gold 3. Conducted over two years (2021–2022), the experiment compared canes with larger (HD) and smaller (LD) proximal diameters. This research focused on parameters [...] Read more.
This study investigated the influence of cane diameter on vegetative, productive, and physiological behaviors in Actinidia chinensis, cv. Gold 3. Conducted over two years (2021–2022), the experiment compared canes with larger (HD) and smaller (LD) proximal diameters. This research focused on parameters such as shoot morphology, leaf gas exchange, fruit quality, and hydraulic resistance. The results revealed that HD canes promoted more vigorous growth, with a higher proportion of long and medium shoots, whereas LD canes resulted in shorter shoots. Additionally, the HD canes demonstrated a higher leaf area and more extensive leaf coverage, contributing to enhanced photosynthetic activity, as evidenced by enhanced gas exchange, stomatal conductance, and transpiration rates. This higher photosynthetic efficiency in HD canes resulted in more rapid fruit growth, with a larger fruit size and weight, particularly in fruits from non-terminate shoots. By contrast, fruits on LD canes exhibited slower growth, particularly in terms of fresh weight and dry matter accumulation. Despite these differences, maturation indices, including soluble solids and acidity levels, were not significantly affected by cane type. The findings suggest that selecting HD canes during winter pruning could lead to earlier harvests, with improved fruit quality and productivity, making this practice beneficial for optimizing vineyard management in Actinidia chinensis. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 336
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

22 pages, 2171 KiB  
Article
A Multi-Objective Method for Enhancing the Seismic Resilience of Urban Water Distribution Networks
by Li Long, Ziang Pan, Huaping Yang, Yong Yang and Feiyu Liu
Symmetry 2025, 17(7), 1105; https://doi.org/10.3390/sym17071105 - 9 Jul 2025
Viewed by 349
Abstract
Enhancing the seismic resilience of urban water distribution networks (WDNs) requires the improvement of both earthquake resistance and rapid recovery capabilities within the system. This paper proposes a multi-objective method to enhance the seismic resilience of the WDNs, focusing on system restoration capabilities [...] Read more.
Enhancing the seismic resilience of urban water distribution networks (WDNs) requires the improvement of both earthquake resistance and rapid recovery capabilities within the system. This paper proposes a multi-objective method to enhance the seismic resilience of the WDNs, focusing on system restoration capabilities while comprehensively considering the hydraulic recovery index, maintenance time, and maintenance cost. The method utilizes a random simulation approach to generate various damage scenarios for the WDN, considering pipe leakage, pipe bursts, and variations in node flow resulting from changes in water pressure. It characterizes the functions of the WDN through hydraulic service satisfaction and quantifies system resilience using a performance response function. Additionally, it determines the optimal dispatch strategy for emergency repair teams and the optimal emergency repair sequence for earthquake-damaged networks using a genetic algorithm. Furthermore, a comprehensive computational platform has been developed to systematically analyze and optimize seismic resilience strategies for WDNs. The feasibility of the proposed method is demonstrated through an example involving the WDN in Xi’an City. The results indicate that the single-objective seismic resilience improvement method based on the hydraulic recovery index is the most effective for enhancing the seismic resilience of the WDN. In contrast, the multi-objective method proposed in this article reduces repair time by 17.9% and repair costs by 3.4%, while only resulting in a 0.2% decrease in the seismic resilience of the WDN. This method demonstrates the most favorable comprehensive restoration effect, and the success of our method in achieving a symmetrically balanced restoration outcome demonstrates its value. The proposed methodology and software can provide both theoretical frameworks and technical support for urban WDN administrators. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 270
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 287
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

33 pages, 25988 KiB  
Article
Erosion Resistance Assessment of Grass-Covered Embankments: Insights from In Situ Overflow Tests at the Living Lab Hedwige-Prosper Polder
by Davy Depreiter, Jeroen Vercruysse, Kristof Verelst and Patrik Peeters
Water 2025, 17(13), 2016; https://doi.org/10.3390/w17132016 - 4 Jul 2025
Viewed by 241
Abstract
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, [...] Read more.
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, full-scale overflow tests were conducted at the Living Lab Hedwige-Prosperpolder along the Dutch–Belgian Scheldt Estuary to assess erosion resistance under varying hydraulic conditions and vegetation states. A custom-built overflow generator was used, with instrumentation capturing flow velocity, water levels, and erosion progression. The results show that well-maintained levees with intact grass cover endured overflow durations up to 30 h despite high terminal flow velocities (4.9–7.7 m/s), without structural damage. In contrast, levee sections with pre-existing surface anomalies, such as animal burrows, slope irregularities, surface damage, or reed-covered soft soils, failed rapidly, often within one to two hours. Animal burrows facilitated subsurface flow and internal erosion, initiating fast, retrograde failure. These findings highlight the importance of preventive maintenance, particularly the timely detection and repair of anomalies. Once slope failure begins, the process unfolds rapidly, leaving no practical window for intervention. Full article
Show Figures

Figure 1

27 pages, 21889 KiB  
Article
Modulus of Elasticity and Mechanical Properties Assessment of Historical Masonry Elements After Elevated Temperature: Experimental Study and Numerical Analysis
by Ahmet Fazıl Kara, Ferit Cakir and Metehan Calis
Buildings 2025, 15(13), 2324; https://doi.org/10.3390/buildings15132324 - 2 Jul 2025
Viewed by 426
Abstract
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay [...] Read more.
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay bricks were prepared using HLMs in accordance with material testing standards. Specimens were subjected to high temperatures ranging from 200 °C to 800 °C, followed by flexural–compression tests for mortar and compression tests for masonry prisms. A total of 20 masonry prism specimens, 15 brick specimens, and 15 mortar specimens were tested, including reference specimens at room temperature. Experimental results indicate that masonry prisms, clay bricks, and HLMs progressively lose their mechanical properties as temperature increases. The elastic modulus of masonry prisms was evaluated according to relevant standards, and Finite Element Analysis (FEA) was conducted to validate temperature-dependent material properties. The stress–strain response of M15 HLM masonry prisms was determined, addressing the absence of such data in EN 1996-1-2. Additionally, compression test results were compared with digital image correlation (DIC) analyses to enhance measurement accuracy. This study provides critical insights into the thermal performance of masonry walls with HLMs, contributing to the development of fire-resistant restoration materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop