Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,502)

Search Parameters:
Keywords = hydraulic characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5618 KiB  
Article
Spatio-Temporal Characteristics of the Morphological Development of Gully Erosion on the Chinese Loess Plateau
by Jinfei Hu, Yifan He, Keyao Huang, Pengfei Li, Shugang Li, Lu Yan and Bingzhe Tang
Remote Sens. 2025, 17(15), 2710; https://doi.org/10.3390/rs17152710 - 5 Aug 2025
Abstract
Morphology is an important characteristic of the hydraulic and gravitational processes driving gully erosion. In this study, field scouring experiments were conducted on five experimental plots using terrestrial laser scanning to study gully erosion processes. The erosion and deposition on a gully slope [...] Read more.
Morphology is an important characteristic of the hydraulic and gravitational processes driving gully erosion. In this study, field scouring experiments were conducted on five experimental plots using terrestrial laser scanning to study gully erosion processes. The erosion and deposition on a gully slope were quantified using the M3C2 algorithm. The results show that the proportion of sediment yield of the gully slope in the whole slope–gully system ranged from 81.5% to 99.7% for different flow discharges (25, 40, 55, 70, and 85 L/min). Compared with low flow discharges (25 and 40 L/min), the gully slope presented more intense gully head retreat and higher erosion intensity under relatively high discharges (55, 70, and 85 L/min). Alcove expansion processes were characterized by horizontal and vertical cycles. Vertical dynamic changes were dominated by the co-evolution of collapses of the gully head and the deepening of the alcove. Horizontal development mainly manifested as a widening of the alcove caused by the hydraulic erosion of the gully wall. The roughness of the gully slope increased gradually with the increase in scour times and then tended towards stability. These results provide a reference for understanding the processes and mechanisms of gully erosion. Full article
(This article belongs to the Special Issue Geodata Science and Spatial Analysis with Remote Sensing)
Show Figures

Figure 1

18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 42
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

16 pages, 10446 KiB  
Article
Transient Vortex Dynamics in Tip Clearance Flow of a Novel Dishwasher Pump
by Chao Ning, Yalin Li, Haichao Sun, Yue Wang and Fan Meng
Machines 2025, 13(8), 681; https://doi.org/10.3390/machines13080681 - 2 Aug 2025
Viewed by 171
Abstract
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. [...] Read more.
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. The correlation between the vorticity distribution in various directions and the leakage vortices was established within a rotating coordinate system. The results show that the TLV in a composite impeller can be categorized into initial and secondary leakage vortices. The initial leakage vortex originates from the evolution of two corner vortices that initially form at different locations within the blade tip clearance. This vortex induces pressure fluctuations at the impeller inlet; its shedding is identified as the primary contributor to localized energy loss within the flow passage. These findings provide insights into TLVs in complex pump geometries and provide solutions for future pump optimization strategies. Full article
Show Figures

Figure 1

25 pages, 5841 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 - 1 Aug 2025
Viewed by 152
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Temporal Deformation Characteristics of Hydraulic Asphalt Concrete Slope Flow Under Different Test Temperatures
by Xuexu An, Jingjing Li and Zhiyuan Ning
Materials 2025, 18(15), 3625; https://doi.org/10.3390/ma18153625 - 1 Aug 2025
Viewed by 195
Abstract
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, [...] Read more.
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, and 70 °C. By applying nonlinear dynamics theory, the temporal evolution of slope flow deformation and its nonlinear mechanical characteristics under varying temperatures were thoroughly analyzed. Results indicate that the thermal stability of hydraulic asphalt concrete is synergistically governed by the phase-transition behavior between asphalt binder and aggregates. Temporal evolution of slope flow exhibits a distinct three-stage pattern as follows: rapid growth (0~12 h), where sharp temperature rise disrupts the primary skeleton of coarse aggregates; decelerated growth (12~24 h), where an embryonic secondary skeleton forms and progressively resists deformation; stabilization (>24 h), where reorganization of coarse aggregates is completed, establishing structural equilibrium. The thermal stability temperature influence factor (δ) shows a nonlinear concave growth trend with increasing test temperature. Dynamically, this process transitions sequentially through critical stability, nonlinear stability, period-doubling oscillatory stability, and unsteady states. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 - 1 Aug 2025
Viewed by 134
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 241
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

27 pages, 8070 KiB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 222
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 276
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 350
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Viewed by 213
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

23 pages, 5974 KiB  
Article
Gas–Liquid Two-Phase Flow in a Hydraulic Braking Pipeline: Flow Pattern and Bubble Characteristics
by Xiaolu Li, Yiyu Ke, Cangsu Xu, Jia Sun and Mingxuan Liang
Fluids 2025, 10(8), 196; https://doi.org/10.3390/fluids10080196 - 29 Jul 2025
Viewed by 247
Abstract
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking [...] Read more.
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking pipeline. Bubble flow pattern recognition, bubble segmentation, and bubble tracking were performed to analyze the bubble movement, including its behavior, distribution, velocity, and acceleration. The results indicate that the gas–liquid two-phase flow patterns in the hydraulic braking pipeline include bubbly, slug, plug, annular, and transient flows. Experiments reveal that bubbly flow is the most frequent, followed by slug, plug, and transient flows. However, plug and transient flows are unstable, while annular flow occurs at a wheel speed of 200 r/min. Bubbles predominantly appear in the upper section of the pipeline. Furthermore, large bubbles travel faster than small bubbles, whereas slug flow bubbles exhibit higher velocities than those in plug or transient flows. Full article
(This article belongs to the Special Issue Hydraulic Flow in Pipelines)
Show Figures

Figure 1

21 pages, 14506 KiB  
Article
Influence of Exit Setting Angle of Guide Vane on Bias Flow in Outlet Passage of Slanted Axial Flow Pump System
by Lei Xu, Longcan Chen, Bo Zhu, Hucheng Zhang, Tao Jiang, Hongfei Duan and Cheng Qian
J. Mar. Sci. Eng. 2025, 13(8), 1413; https://doi.org/10.3390/jmse13081413 - 24 Jul 2025
Viewed by 264
Abstract
A slanted axial-flow pump is extensively applied in coastal pumping stations; however, severe bias flow within the outlet passage will result in unstable operation and low efficiency of the slanted axial flow pump system. In order to mitigate bias flow in a slanted [...] Read more.
A slanted axial-flow pump is extensively applied in coastal pumping stations; however, severe bias flow within the outlet passage will result in unstable operation and low efficiency of the slanted axial flow pump system. In order to mitigate bias flow in a slanted axial-flow pump outlet passage, seven exit setting angle schemes of the guide vanes were designed. The influence mechanisms of the guide vane exit setting angle on internal flow characteristics, hydraulic loss, flow deviation coefficient, vortex evolution patterns, and pump system efficiency were systematically investigated. The results demonstrate that under design flow conditions, as the exit setting angle of the guide vane ranges from 90° to 105°, the flow field in the first half of the guide vane remains essentially the same. The low-velocity region at the guide vane outlet demonstrates initial contraction followed by gradual expansion with increasing stagger angles. Looking downstream within the flow passage from the left to the right, the hydraulic loss in the outlet passage goes up after an initial descending trend as the exit setting angle increases. When the exit setting angle is 97.5°, the bias coefficient of the outlet passage is 1.031. At this point, the vortex core distribution intensity within the outlet passage reaches a minimum, corresponding to the lowest recorded hydraulic loss of 0.230 m. Compared with the original guide vane scheme, the scheme with an angle set at 97.5° can improve the pump system efficiency of the slanted axial flow pump system, whether the flow is set at a design point or at a large point, and the pump system efficiency is increased by 2.3% under design flow conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 2469 KiB  
Article
A Study on the Optimization and Sensitivity Analysis of Cuttings Transport in Large-Diameter Boreholes
by Qing Wang, Li Liu, Jiawei Zhang, Jianhua Guo, Xiaoao Liu, Guodong Ji, Fei Zhou and Haonan Yang
Fluids 2025, 10(8), 187; https://doi.org/10.3390/fluids10080187 - 22 Jul 2025
Viewed by 211
Abstract
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional [...] Read more.
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional single-parameter control methods often fail to achieve effective cuttings transport. This study aims to identify the dominant influencing factors and optimize key parameters by focusing on the cuttings volume fraction as a primary evaluation metric. A numerical simulation approach is employed to systematically investigate the influence of stabilizer geometry and hydraulic parameters. Five variables—drilling fluid velocity, drill pipe rotational speed, number of stabilizers, flow area, and helical angle—are selected for analysis. An initial one-factor sensitivity analysis is conducted to evaluate local impacts and to establish relative sensitivity indices, thereby identifying key variables. A variance-based global sensitivity analysis is further applied to quantify first-order effects, full-order effects, and interaction contributions, revealing nonlinear coupling and synergistic mechanisms. The results indicate that drilling fluid velocity and rotation speed exhibit the most significant first-order influences, while stabilizer-related parameters show strong interaction effects that are often underestimated by traditional methods. Based on these findings, an optimized cuttings transport scheme for large-diameter boreholes is proposed. Additionally, a multi-parameter response model for the cuttings volume fraction is developed using sensitivity-weighted analysis, offering theoretical support and methodological reference for enhancing cuttings transport performance and structural design in large-diameter borehole drilling operations. Full article
(This article belongs to the Special Issue Digital Technologies for Oil Recovery and Sustainability)
Show Figures

Figure 1

27 pages, 6704 KiB  
Article
Dynamic Characteristics of a Digital Hydraulic Drive System for an Emergency Drainage Pump Under Alternating Loads
by Yong Zhu, Yinghao Liu, Qingyi Wu and Qiang Gao
Machines 2025, 13(8), 636; https://doi.org/10.3390/machines13080636 - 22 Jul 2025
Viewed by 225
Abstract
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone [...] Read more.
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone to being affected by random and uncertain loads during operation. To achieve intelligent and efficient rescue operations, a DHDS suitable for EDPs was proposed. Firstly, the configuration and operation mode of the DHDS for EDPs were analyzed. Based on this, a multi-field coupling dynamic simulation platform for the DHDS was constructed. Secondly, the output characteristics of the system under alternating loads were simulated and analyzed. Finally, a test platform for the EDP DHDS was established, and the dynamic characteristics of the system under alternating loads were explored. The results show that as the load torque of the alternating loads increases, the amplitude of the pressure of the motor also increases, the output flow of the hydraulic-controlled proportional reversing valve (HCPRV) changes slightly, and the fluctuation range of the rotational speed of the motor increases. The fluctuation range of the pressure and the rotational speed of the motor are basically not affected by the frequency of alternating loads, but the fluctuation amplitude of the output flow of the HCPRV reduces with the increase in the frequency of alternating loads. This system can respond to changes in load relatively quickly under alternating loads and can return to a stable state in a short time. It has laudable anti-interference ability and output stability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop