Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = hybrid chalcone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7317 KiB  
Article
Synthesis, Biological Evaluation, and In Silico Characterization of Novel Imidazothiadiazole–Chalcone Hybrids as Multi-Target Enzyme Inhibitors
by Hakan Alici, Senol Topuz, Kadir Demir, Parham Taslimi and Hakan Tahtaci
Pharmaceuticals 2025, 18(7), 962; https://doi.org/10.3390/ph18070962 - 26 Jun 2025
Viewed by 593
Abstract
Background/Objectives: The need for dual-targeted enzyme inhibitors is critical in addressing complex diseases like Alzheimer’s and glaucoma. Imidazothiadiazole and chalcone moieties are known for diverse bioactivities. This study aimed to develop novel imidazothiadiazole–chalcone hybrids as potential inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and [...] Read more.
Background/Objectives: The need for dual-targeted enzyme inhibitors is critical in addressing complex diseases like Alzheimer’s and glaucoma. Imidazothiadiazole and chalcone moieties are known for diverse bioactivities. This study aimed to develop novel imidazothiadiazole–chalcone hybrids as potential inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase isoforms (hCAs), specifically hCA I and hCA II. Methods: Four hybrid molecules (8a–8d) were synthesized and structurally confirmed via 1H NMR, 13C NMR, FT-IR, MS, and elemental analysis techniques. Their enzyme inhibitory activities were assessed using Ellman’s and Verpoorte’s methods. Molecular docking and 100 ns molecular dynamics (MD) simulations were conducted to examine binding interactions. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were predicted using the pkCSM platform. Results: All compounds showed strong enzyme inhibition: AChE (Ki: 3.86–11.35 nM), BChE (Ki: 1.01–1.78 nM), hCA I (Ki: 45.13–81.24 nM), and hCA II (Ki: 36.08–52.45 nM). Docking analyses confirmed favorable binding, particularly with active-site residues. MD simulations demonstrated stable interactions throughout 100 ns. Compound 8a exhibited the highest cholinesterase inhibition, while compounds 8d and 8c were the most potent against hCA I and hCA II, respectively. The ADMET results showed high absorption and acceptable safety, with mild mutagenicity or cardiotoxicity concerns in select compounds. Conclusions: These findings suggest that imidazothiadiazole–chalcone hybrids are promising multi-target enzyme inhibitors. Their potent activity, structural stability, and pharmacokinetic potential support their further development for therapeutic use in neurodegenerative and ocular diseases. Full article
Show Figures

Graphical abstract

15 pages, 2674 KiB  
Article
Transcriptome of Two-Hybrid Poplar (Populus alba × P. tomentiglandulosa) During Adventitious Root Formation After Stem Cutting
by Siyeon Byeon and Il Hwan Lee
Biology 2025, 14(7), 751; https://doi.org/10.3390/biology14070751 - 23 Jun 2025
Viewed by 337
Abstract
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were [...] Read more.
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were divided into two groups based on their rooting ability (high or low), and their transcriptome was analyzed for 3 weeks following stem-cutting propagation to investigate the rooting mechanisms of a hybrid of two fast-growing poplar species (Populus alba × P. tomentiglandulosa). The root length and area of the high-rooting group were 668.7% and 198.4% greater than those of the low-rooting ability group, respectively (maximum p < 0.001). Compared to week 0, genes involved in auxin signaling, cell wall organization, and secondary metabolite biosynthesis were consistently upregulated at 1, 2, and 3 weeks after planting, respectively. The expression of genes associated with cell wall differentiation and flavonoid biosynthesis was greater in the high- than in the low-rooting group at week 2. MYB and AP2/ERF transcription factors, which regulate flavonoid biosynthesis, as well as chalcone isomerase, a key enzyme in early flavonoid biosynthesis and root formation, were upregulated in the high-rooting group. The flavonoid biosynthesis pathway is important in rooting after stem cutting of Populus alba × P. tomentiglandulosa hybrids. Full article
(This article belongs to the Special Issue Molecular Biology of Plants)
Show Figures

Figure 1

24 pages, 1714 KiB  
Review
Engineering and Exploiting Immobilized Peptide Organocatalysts for Modern Synthesis
by Marco Francescato, Hang Liao and Luca Gentilucci
Molecules 2025, 30(12), 2517; https://doi.org/10.3390/molecules30122517 - 9 Jun 2025
Viewed by 749
Abstract
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions [...] Read more.
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions have been described. However, peptide synthesis typically implicates the use of toxic reagents and generates wastes; therefore, peptide recycling is expected to significantly improve the overall sustainability of the process. Easy recovery and recycling of peptide catalysts can be expediently attained by covalent binding, inclusion, or adsorption. In addition, immobilization can significantly accelerate the screening of new peptide catalysts. For these reasons, diverse supports have been tested, including natural or synthetic polymers, porous polymeric networks, inorganic porous materials, organic-inorganic hybrid materials, and finally metal–organic frame-works. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

32 pages, 4898 KiB  
Review
A Review of Natural and Synthetic Chalcones as Anticancer Agents Targeting Topoisomerase Enzymes
by François-Xavier Toublet, Aurélie Laurent and Christelle Pouget
Molecules 2025, 30(12), 2498; https://doi.org/10.3390/molecules30122498 - 6 Jun 2025
Viewed by 862
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, driving the search for innovative and selective therapeutic agents. Topoisomerases I and II are essential enzymes involved in key cellular processes such as DNA replication and transcription. They have emerged as [...] Read more.
Cancer remains one of the leading causes of morbidity and mortality worldwide, driving the search for innovative and selective therapeutic agents. Topoisomerases I and II are essential enzymes involved in key cellular processes such as DNA replication and transcription. They have emerged as valuable anticancer targets; thus, many inhibitors of topoisomerases have been designed and some of them are considered to be major anticancer agents such as anthracyclines, etoposide or irinotecan. A great deal of attention is currently being paid to chalcones, a class of naturally occurring compounds, since they exhibit a wide range of biological activities, including anticancer properties. These compounds are characterized by an open-chain structure and an α,β-unsaturated carbonyl moiety that enables interaction with cellular targets. Recent studies aiming to design anti-topoisomerase agents have identified both natural and synthetic chalcones, including chalcone-based hybrids. This review highlights the structural diversity of chalcones as topoisomerase inhibitors and particular attention is given to structure–activity relationship studies and molecular hybridization strategies aimed at optimizing the pharmacological profile of chalcones. These findings underline the potential of chalcones as promising scaffolds in the design of next-generation anticancer agents. Full article
(This article belongs to the Special Issue Synthesis and Evaluation of Bioactivity of Enzyme Inhibitors)
Show Figures

Figure 1

33 pages, 3749 KiB  
Article
Novel Isatin–Chalcone Hybrid Molecules: Design, Synthesis and Anti-Neuroinflammatory Activity Evaluation
by Rongrong Wang, Zhili Zhang, Wei Jiang, Junyi Liu, Chao Tian and Meng Wang
Molecules 2025, 30(7), 1421; https://doi.org/10.3390/molecules30071421 - 22 Mar 2025
Viewed by 710
Abstract
Neuroinflammation is considered a significant factor in triggering numerous neurodegenerative diseases. Hence, the development of effective anti-inflammatory drugs is of utmost urgency. In this study, three series of new isatin–chalcone hybrid derivatives were successfully designed and synthesized, and their anti-neuritis activities were explored [...] Read more.
Neuroinflammation is considered a significant factor in triggering numerous neurodegenerative diseases. Hence, the development of effective anti-inflammatory drugs is of utmost urgency. In this study, three series of new isatin–chalcone hybrid derivatives were successfully designed and synthesized, and their anti-neuritis activities were explored using BV2 microglial cells. The results indicated that compound 4b exhibited the most potent anti-inflammatory activity (IC50 = 1.6 μM; TI = 21.6). After being treated with compound 4b, the production of TNF-α and IL-6 decreased significantly (p < 0.0001). In silico molecular modeling studies on inflammation proteins suggested that compound 4b might bind to TLR4/MD2 and p38. Predicted by the software Molinspiration, the Log p value and Log BB of compound 4b were 3.36 and −0.32, respectively. Full article
Show Figures

Graphical abstract

7 pages, 772 KiB  
Communication
A Facile and Rapid Method for Synthesizing Indole–Chalcone Hybrids
by Solange A. Tanyi, Donatus B. Eni, Mohamed Abdelsalam, Matthias Schmidt, Wolfgang Sippl and Fidele Ntie-Kang
Molbank 2025, 2025(1), M1974; https://doi.org/10.3390/M1974 - 25 Feb 2025
Cited by 1 | Viewed by 962
Abstract
Indole–chalcone hybrids are a large group of compounds known for their excellent biological properties the help combat diverse pathogens. This study describes a rapid synthetic pathway for the synthesis of ten indole–chalcone hybrids, namely, 3(aj), from 1-Boc-3-formylindole ( [...] Read more.
Indole–chalcone hybrids are a large group of compounds known for their excellent biological properties the help combat diverse pathogens. This study describes a rapid synthetic pathway for the synthesis of ten indole–chalcone hybrids, namely, 3(aj), from 1-Boc-3-formylindole (1) and acetophenone derivatives (2), in a one-pot approach. This synthesis involved an initial condensation reaction and subsequent deprotection of the Boc group. 1H-NMR, 13C-NMR, and MS were used to elucidate the structures of the final compounds. Contrary to previous methods for the synthesis of indole–chalcone hybrids, this novel synthetic method, which involves using a Boc-protected indole via microwave-assisted synthesis, is advantageous because it is a one-pot approach, making it facile and rapid. Full article
Show Figures

Figure 1

21 pages, 3717 KiB  
Article
Design, Synthesis, and Mechanistic Anticancer Evaluation of New Pyrimidine-Tethered Compounds
by Farida Reymova, Belgin Sever, Edanur Topalan, Canan Sevimli-Gur, Mustafa Can, Amaç Fatih Tuyun, Faika Başoğlu, Abdulilah Ece, Masami Otsuka, Mikako Fujita, Hasan Demirci and Halilibrahim Ciftci
Pharmaceuticals 2025, 18(2), 270; https://doi.org/10.3390/ph18020270 - 19 Feb 2025
Cited by 6 | Viewed by 1671
Abstract
Background: Despite recent breakthroughs in cancer treatment, non-small cell lung cancer (NSCLC) and breast cancer remain major causes of death from all malignancies. The epidermal growth factor receptor (EGFR) is an important mediator of the pathways involved in cell proliferation, apoptosis, and angiogenesis. [...] Read more.
Background: Despite recent breakthroughs in cancer treatment, non-small cell lung cancer (NSCLC) and breast cancer remain major causes of death from all malignancies. The epidermal growth factor receptor (EGFR) is an important mediator of the pathways involved in cell proliferation, apoptosis, and angiogenesis. Thus, its overexpression triggers several types of cancer, including NSCLC and breast cancer. Methods: In the current study, we synthesized new pyrimidine-tethered compounds (chalcone derivative (B-4), pyrazoline–carbothioamide (B-9), and pyrazoline–thiazole hybrids (BH1-7)). These compounds were then tested for cytotoxicity against A549 NSCLC and MCF-7 breast cancer cells. Results: Of these, B-4 displayed significant cytotoxicity against both cells (IC50 = 6.70 ± 1.02 µM for MCF-7; IC50 = 20.49 ± 2.7 µM for A549) compared to the standard agent lapatinib (IC50 = 9.71 ± 1.12 µM for MCF-7; IC50 = 18.21 ± 3.25 µM for A549). The anticancer potential of B-4 between Jurkat leukemic T cells and peripheral blood mononuclear cells (PBMCs) (healthy) was found to be selective. Mechanistically, 11.9% and 10.2% of A549 and MCF-7 cells treated with B-4, respectively, underwent apoptosis and B-4 produced 46% EGFR inhibition at a concentration of 10 μM. The B-4/EGFR complex obtained after induced fit docking was subjected to 300 ns of molecular dynamics simulation, which confirmed the stability of the complex in a mimicked biological environment. On the other hand, B-4 was shown to have drug-like properties by in silico pharmacokinetic estimation. Conclusions: B-4 is an EGFR inhibitor and apoptosis inducer for future NSCLC and breast cancer studies. Full article
Show Figures

Figure 1

54 pages, 6031 KiB  
Article
(E)-1-(3-(3-Hydroxy-4-Methoxyphenyl)-1-(3,4,5-Trimethoxyphenyl)allyl)-1H-1,2,4-Triazole and Related Compounds: Their Synthesis and Biological Evaluation as Novel Antimitotic Agents Targeting Breast Cancer
by Gloria Ana, Azizah M. Malebari, Sara Noorani, Darren Fayne, Niamh M. O’Boyle, Daniela M. Zisterer, Elisangela Flavia Pimentel, Denise Coutinho Endringer and Mary J. Meegan
Pharmaceuticals 2025, 18(1), 118; https://doi.org/10.3390/ph18010118 - 17 Jan 2025
Cited by 2 | Viewed by 3871
Abstract
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of [...] Read more.
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition. Results: (E)-5-(3-(1H-1,2,4-triazol-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)-2-methoxyphenol 22b was identified as a potent antiproliferative compound with an IC50 value of 0.39 mM in MCF-7 breast cancer cells, 0.77 mM in triple-negative MDA-MB-231 breast cancer cells, and 0.37 mM in leukemia HL-60 cells. In addition, compound 22b demonstrated potent activity in the sub-micromolar range against the NCI 60 cancer cell line panel including prostate, melanoma, colon, leukemia, and non-small cell lung cancers. G2/M phase cell cycle arrest and the induction of apoptosis in MCF-7 cells together with inhibition of tubulin polymerization were demonstrated. Immunofluorescence studies confirmed that compound 22b targeted tubulin in MCF-7 cells, while computational docking studies predicted binding conformations for 22b in the colchicine binding site of tubulin. Compound 22b also selectively inhibited aromatase. Conclusions: Based on the results obtained, these novel compounds are suitable candidates for further investigation as antiproliferative microtubule-targeting agents for breast cancer. Full article
Show Figures

Graphical abstract

15 pages, 4481 KiB  
Article
Characterization of Grape Extract-Colored SiO2 Synthesized via the Sol–Gel Method
by Marika Fiorentino, Antonio D’Angelo, Luigi Vertuccio, Humaira Khan and Michelina Catauro
Appl. Sci. 2024, 14(24), 11697; https://doi.org/10.3390/app142411697 - 15 Dec 2024
Viewed by 1018
Abstract
Numerous studies have focused on the development of active packaging using plastics, but glass-based active packaging represents a more sustainable alternative, offering advantages in terms of recyclability, durability, and reduced environmental footprint. This study proposes a glass-based active packaging system by incorporating anthocyanins-rich [...] Read more.
Numerous studies have focused on the development of active packaging using plastics, but glass-based active packaging represents a more sustainable alternative, offering advantages in terms of recyclability, durability, and reduced environmental footprint. This study proposes a glass-based active packaging system by incorporating anthocyanins-rich grape extract (GRE) into a silica (SiO2) matrix using the sol–gel method. GRE was added at two concentrations, 5% (S5GRE) and 15% (S15GRE). During synthesis, color brightening occurred as anthocyanins shifted to colorless chalcone and pseudo-base forms, but colorimetric analysis confirmed that the hybrid materials retained a red hue after gel drying. Fourier-transform infrared (FTIR) and thermogravimetric analysis (TGA/DTG) investigated the stability of the GRE within the silica matrix and showed that both hybrids formed hydrogen bonds with the inorganic matrix. However, S5GRE exhibited better thermal stability compared to that of S15GRE, possibly due to a greater proportion of the extract being fully entrapped rather than surface-bound. The encapsulation efficiency analysis supported this, showing that 98.12% of the GRE was successfully entrapped in S5GRE, whereas S15GRE retained only 54.62%. These results indicate that, while S5GRE exhibits higher encapsulation efficiency and allows for faster release, S15GRE releases less efficiently due to extract aggregation within the matrix. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

17 pages, 2168 KiB  
Article
Unveiling the Anticancer Potential of a New Ciprofloxacin-Chalcone Hybrid as an Inhibitor of Topoisomerases I & II and Apoptotic Inducer
by Doaa Mohamed Elroby Ali, Hossameldin A. Aziz, Stefan Bräse, Areej Al Bahir, Abdullah Alkhammash, Gamal El-Din A. Abuo-Rahma, Ali M. Elshamsy, Hamada Hashem and Walid M. Abdelmagid
Molecules 2024, 29(22), 5382; https://doi.org/10.3390/molecules29225382 - 15 Nov 2024
Cited by 10 | Viewed by 1638
Abstract
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of [...] Read more.
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of HCT-116 and LOX IMVI cells, with IC50 values of 5.0 μM and 1.3 μM, respectively, outperforming Staurosporine, which had IC50 values of 8.4 μM and 1.6 μM, respectively. Flow cytometry analysis revealed that the new CP derivative triggered apoptosis and cell cycle arrest at the G2/M phase, associated with the up-regulation of pro-apoptotic genes (Bax and Caspase 9) and downregulation of the anti-apoptotic gene (Bcl-2). Further investigations showed that the CP derivative inhibited Topo I and II enzymes, as expected molecular targets; docking studies further supported its dual inhibitory action on Topo I and II. These findings suggest that the ciprofloxacin-chalcone hybrid could be a promising lead compound for developing new anticancer therapy. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

19 pages, 9295 KiB  
Article
A New Class of Benzo[b]thiophene-chalcones as Cholinesterase Inhibitors: Synthesis, Biological Evaluation, Molecular Docking and ADME Studies
by Giovanna Lucia Delogu, Michela Begala, Maria João Matos, Davide Crucitti, Valeria Sogos, Benedetta Era and Antonella Fais
Molecules 2024, 29(16), 3748; https://doi.org/10.3390/molecules29163748 - 7 Aug 2024
Cited by 2 | Viewed by 2797
Abstract
In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a4i and benzothiophene-chalcone hybrids 5a5i were tested against both [...] Read more.
In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a4i and benzothiophene-chalcone hybrids 5a5i were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing interesting structure–activity relationships. In general, benzothiophene–chalcone hybrids from series 5 proved to be better inhibitors of both enzymes, with compound 5f being the best AChE inhibitor (IC50 = 62.10 μM) and compound 5h being the best BChE inhibitor (IC50 = 24.35 μM), the last one having an IC50 similar to that of galantamine (IC50 = 28.08 μM), the reference compound. The in silico ADME profile of the compounds was also studied. Molecular docking calculations were carried out to analyze the best binding scores and to elucidate enzyme–inhibitors’ interactions. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Graphical abstract

20 pages, 3550 KiB  
Article
Synthesis and Antiproliferative Effect of New Alkyne-Tethered Vindoline Hybrids Containing Pharmacophoric Fragments
by Etelka Ferenczi, Péter Keglevich, Bizhar Ahmed Tayeb, Renáta Minorics, Dávid Papp, Gitta Schlosser, István Zupkó, László Hazai and Antal Csámpai
Int. J. Mol. Sci. 2024, 25(13), 7428; https://doi.org/10.3390/ijms25137428 - 6 Jul 2024
Cited by 1 | Viewed by 1897
Abstract
In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, [...] Read more.
In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, including FDA-approved tyrosine-kinase inhibitors (imatinib and erlotinib) or ferrocene or chalcone units, were evaluated for their antiproliferative activity on malignant cell lines MDA-MB-231 (triple negative breast cancer), A2780 (ovarian cancer), HeLa (human cervical cancer), and SH-SY5Y (neuroblastoma) as well as on human embryonal lung fibroblast cell line MRC-5, which served as a reference non-malignant cell line for the assessment of the therapeutic window of the tested hybrids. The biological assays identified a trimethoxyphenyl-containing chalcone-vindoline hybrid (36) as a promising lead compound exhibiting submicromolar activity on A2780 cells with a marked therapeutic window. Full article
(This article belongs to the Special Issue Natural Compounds in Cancer Therapy and Prevention, 2nd Edition)
Show Figures

Figure 1

22 pages, 3850 KiB  
Article
Synthesis, Anticancer Activity, and Docking Studies of Novel Hydroquinone-Chalcone-Pyrazoline Hybrid Derivatives
by Javier Maldonado, Alfonso Oliva, Leda Guzmán, Aurora Molinari and Waldo Acevedo
Int. J. Mol. Sci. 2024, 25(13), 7281; https://doi.org/10.3390/ijms25137281 - 2 Jul 2024
Cited by 1 | Viewed by 2512
Abstract
A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone β-carbon with the furanyl moiety and structural modification of the α,β-unsaturated carbonyl system. The [...] Read more.
A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone β-carbon with the furanyl moiety and structural modification of the α,β-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VIIX), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays. Full article
(This article belongs to the Special Issue Bioactive Compounds in Cancers)
Show Figures

Figure 1

17 pages, 7009 KiB  
Article
Effects of UVA on Flavonol Accumulation in Ginkgo biloba
by Qun Zhao, Zheng Wang, Gaiping Wang, Fuliang Cao, Xiaoming Yang, Huiqin Zhao and Jinting Zhai
Forests 2024, 15(6), 909; https://doi.org/10.3390/f15060909 - 23 May 2024
Cited by 3 | Viewed by 1490
Abstract
Ginkgo is an economic tree species with high medicinal value, and flavonols are its main medicinal components. This research was conducted to investigate the molecular mechanism underlying the influence of Ultraviolet A (UVA) treatment on the synthesis of ginkgo flavonols with the aim [...] Read more.
Ginkgo is an economic tree species with high medicinal value, and flavonols are its main medicinal components. This research was conducted to investigate the molecular mechanism underlying the influence of Ultraviolet A (UVA) treatment on the synthesis of ginkgo flavonols with the aim of increasing their content. Ginkgo full-sib hybrid offspring were used as test materials. The phenylalanine ammonialyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) enzyme activities, as well as flavonol contents, were measured under the same intensity of white light (300 μmol·m−2·s−1) with the addition of 20, 40, and 60 μmol·m−2·s−1 UVA separately after 20 days of treatment. The control check (CK) and treatment with the highest flavonol content were chosen for transcriptome sequencing analysis. The results showed that the PAL, C4H, and 4CL enzyme activities, as well as the flavonol and totalflavonol glycoside contents, of ginkgo hybrid progeny differed significantly under different UVA treatments. They showed a tendency to increase and then decrease, reaching a maximum value under UVA-4 (40 μmol·m−2·s−1 ultraviolet UVA light intensity) treatment. Ribonucleic acid (RNA) sequencing revealed the presence of 4165 genes with differential expression, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolic pathways commonly enriched across all four comparison groups included ‘phenylpropanoid biosynthesis’, while the pathways commonly enriched in green-leaf ginkgo UVA-4 treatment (TL), yellow-leaf ginkgo mutant CK treatment (CKY), and green-leaf ginkgo CK treatment (CKL) were related to ‘flavonoid biosynthesis’. Treatment with UVA light led to the increased expression of PAL and 4CL enzymes in the phenylpropanoid biosynthesis pathway, as well as increased expression of chalcone synthase (CHS), Flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) enzymes in the flavonoid biosynthesis pathway, thereby promoting the synthesis of ginkgo flavonols. In summary, the use of 40 μmol·m−2·s−1 UVA treatment for 20 days significantly increased the flavonol content and the expression of related enzyme genes in ginkgo hybrid offspring, enhancing ginkgo flavonoids and increasing the medicinal value of ginkgo. Full article
(This article belongs to the Special Issue Chemical Ecology in Forests)
Show Figures

Figure 1

24 pages, 4328 KiB  
Article
Synthesis of Novel Triazine-Based Chalcones and 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as Potential Leads in the Search of Anticancer, Antibacterial and Antifungal Agents
by Leydi M. Moreno, Jairo Quiroga, Rodrigo Abonia, María del P. Crespo, Carlos Aranaga, Luis Martínez-Martínez, Maximiliano Sortino, Mauricio Barreto, María E. Burbano and Braulio Insuasty
Int. J. Mol. Sci. 2024, 25(7), 3623; https://doi.org/10.3390/ijms25073623 - 23 Mar 2024
Cited by 4 | Viewed by 2439
Abstract
This study presents the synthesis of four series of novel hybrid chalcones (20,21)ag and (23,24)ag and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (2833)ag and the [...] Read more.
This study presents the synthesis of four series of novel hybrid chalcones (20,21)ag and (23,24)ag and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (2833)ag and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,dg, 24ag and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,eg, 33a,b,eg exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 μM and LC50 values in the range of 4.09 μM to >100 μM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25–62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 μg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop