Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = hyaluronidase inhibition activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6593 KiB  
Article
Pulsed Electric Field-Assisted “Green” Extraction of Betalains and Phenolic Compounds from Opuntia stricta var. dillenii Prickly Pears: Process Optimization and Biological Activity of Green Extracts
by Iván Gómez-López, Annachiara Pirozzi, Serena Carpentieri, María P. Portillo, Gianpiero Pataro, Giovanna Ferrari and M. Pilar Cano
Foods 2025, 14(17), 2934; https://doi.org/10.3390/foods14172934 - 22 Aug 2025
Abstract
Opuntia stricta var. dillenii (OPD) fruits are rich in betalains and phenolic compounds, which are recognized for their potential health-promoting properties. This study focuses on the optimization of pulsed electric field (PEF)-assisted solid–liquid green extraction (SLE) from OPD whole fruit, using response surface [...] Read more.
Opuntia stricta var. dillenii (OPD) fruits are rich in betalains and phenolic compounds, which are recognized for their potential health-promoting properties. This study focuses on the optimization of pulsed electric field (PEF)-assisted solid–liquid green extraction (SLE) from OPD whole fruit, using response surface methodology (RSM) experimental design to obtain green extracts rich in bioactive compounds. The optimal PEF pre-treatment conditions (electric field strength and energy input) were determined based on the cell disintegration index (Zp), followed by optimizing SLE conditions (temperature, time, and ethanol content). High-performance liquid chromatography (HPLC-DAD-ESI-Qtof) was used to characterize the individual bioactive compound profile of the obtained OPD green extracts. Results showed that optimal PEF pre-treatment conditions were at 10.5 kJ/kg and 5 kV/cm, followed by SLE at 35 °C for 165 min, using water as the solvent. Conventional optimal SLE conducted at 45 °C, 8% ethanol, and 128 min was applied as the control process. The combined PEF-assisted SLE process enhanced total betalain and phenolic compound yields by 61% and 135%, respectively. Antioxidant activities (DPPH by 145%, FRAP by 28%) and anti-inflammatory potential (hyaluronidase inhibition by 19%) were also significantly improved. This study underscores the potential use of a PEF pre-treatment to improve obtaining green extracts rich in bioactive compounds with high biological activities from OPD whole fruits, using water as a solvent. Full article
24 pages, 2544 KiB  
Article
Edible Flowers as Bioactive Food Ingredients with Antidiabetic Potential: A Study on Paeonia officinalis L., Forsythia × intermedia, Gomphrena globosa L., and Clitoria ternatea L.
by Maciej Książkiewicz, Michalina Karczewska, Filip Nawrot, Karolina Grabowska, Marcin Szymański, Judyta Cielecka-Piontek and Elżbieta Studzińska-Sroka
Plants 2025, 14(16), 2603; https://doi.org/10.3390/plants14162603 - 21 Aug 2025
Viewed by 235
Abstract
Type 2 diabetes is a serious public health problem in the 21st century. To find new substances supporting diabetes therapy, researchers are increasingly paying attention to the biological potential of edible flowers. This study assessed the antidiabetic potential of ethanol, 50% ethanol, and [...] Read more.
Type 2 diabetes is a serious public health problem in the 21st century. To find new substances supporting diabetes therapy, researchers are increasingly paying attention to the biological potential of edible flowers. This study assessed the antidiabetic potential of ethanol, 50% ethanol, and water extracts from Paeonia officinalis L., Forsythia × intermedia, Gomphrena globosa L., and Clitoria ternatea L. flowers. Extracts were tested for antioxidant activity (DPPH, ABTS, FRAP, CUPRAC, and Fe2+ chelation), enzyme inhibition (α-glucosidase, α-amylase, hyaluronidase, and cholinesterases), and anti-inflammatory effects (NO inhibition in LPS-stimulated RAW264.7 macrophages). Phytochemical composition was also analysed. Extracts of P. officinalis stood out with the highest total phenolic content (50% ethanol extract of P. officinalis 178.49 mg GAE/g) and total flavonoid content (aqueous extracts of P. officinalis 4.27 mg QE/g), high gallic acid level, and the effective inhibition of α-glucosidase and α-amylase (α-glucosidase inhibition 98–99% for all P. officinalis extracts, and α-amylase inhibition ~ 100% for ethanolic extract). Strong hyaluronidase (76.9–95.5%) and cholinesterase inhibition was also observed. F. × intermedia extracts were rich in rutin and chlorogenic acid and showed potent inhibitory effects on α-glucosidase (50% ethanol extract 91.59%), α-amylase (aqueous extract 89.35%), and hyaluronidase (aqueous extract 73.8%). Ethanol extracts of G. globosa exhibited a high α-amylase inhibition (93–95%). Although C. ternatea showed moderate antioxidant activity, it showed an apparent anti-inflammatory effect, effectively reducing NO production in activated macrophages for 50% ethanol extract. In summary, P. officinalis and F. × intermedia flowers are promising sources of extracts with antioxidant, antidiabetic, and anti-inflammatory effects supporting their use in further research on type 2 diabetes therapy. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Graphical abstract

26 pages, 1955 KiB  
Article
A Bioactive Emulgel Formulation of Equisetum telmateia Ehrh. Methanol Extract: Integrating Antioxidant Activity, Skin Enzyme Inhibition, and Permeation Kinetics
by Tuğba Buse Şentürk, Timur Hakan Barak, Emre Şefik Çağlar, Emine Saldamlı, Ebru Özdemir Nath and Zafer Ömer Özdemir
Gels 2025, 11(8), 662; https://doi.org/10.3390/gels11080662 - 20 Aug 2025
Viewed by 268
Abstract
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the [...] Read more.
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the antioxidant capacity of, and the phytochemical composition of E. telmateia. Additionally, a novel emulgel was formulated from the main methanolic extract and characterized in terms of pH, viscosity, determination of content quantification, textural profile analysis, and spreadability. After the characterization studies, in vitro release and ex vivo permeation and penetration studies were performed. Firstly, the dried aerial parts of E. telmateia were macerated in methanol, followed by partitioning with solvents of increasing polarity: n-hexane, chloroform, ethyl acetate, and n-butanol. Antioxidant activity was assessed using DPPH, FRAP, CUPRAC, and TOAC assays, while enzyme inhibition was analyzed for collagenase, elastase, hyaluronidase, and tyrosinase. LC-MS/MS analysis identified 53 phytochemical compounds. Protocatechuic acid, the main phenolic compound, was quantitatively analyzed in each subfraction by HPTLC. The in vitro release studies showed sustained release of the reference substance (protocatechuic acid) and the kinetic modeling of the release was fitted to the Higuchi model. The ex vivo permeation and penetration studies showed that the formulation exhibited a retention of 3.06 ± 0.21 µg.cm−2 after 24 h, whereas the suspended extract demonstrated a skin retention of 1.28 ± 0.47 µg.cm−2. Both the extracts and the formulated emulgel exhibited inhibitory effects on skin-related enzymes. Our finding suggested that E. telmateia might be a valuable ingredient for wrinkle care and skin-regenerating cosmetics. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Figure 1

25 pages, 3037 KiB  
Article
Bioactive Potential of Nepenthes miranda Flower Extracts: Antidiabetic, Anti-Skin Aging, Cytotoxic, and Dihydroorotase-Inhibitory Activities
by Kuan-Ming Lai, Yen-Hua Huang, Yi Lien and Cheng-Yang Huang
Plants 2025, 14(16), 2579; https://doi.org/10.3390/plants14162579 - 19 Aug 2025
Viewed by 304
Abstract
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract [...] Read more.
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract exhibited the highest total phenolic content (18.2 mg GAE/g), flavonoid content (68.9 mg QUE/g), and antioxidant activity (DPPH IC50 = 66.9 μg/mL), along with strong antibacterial effects against Escherichia coli and Staphylococcus aureus. Cosmetically relevant enzyme inhibition assays revealed significant activity against tyrosinase (IC50 = 48.58 μg/mL), elastase (IC50 = 1.77 μg/mL), and hyaluronidase (IC50 = 7.33 μg/mL), supporting its potential as an anti-skin aging agent. For antidiabetic evaluation, the ethanol extract demonstrated potent α-glucosidase inhibition (IC50 = 24.53 μg/mL), outperforming standard inhibitors such as acarbose and quercetin. The extract also displayed marked cytotoxicity against A431 epidermoid carcinoma cells (IC50 = 90.61 μg/mL), inducing dose-dependent apoptosis, inhibiting cell migration and colony formation, and causing significant DNA damage as shown by comet assay. Furthermore, the ethanol extract strongly inhibited the activity of purified human dihydroorotase (IC50 = 25.11 μg/mL), indicating that disruption of pyrimidine biosynthesis may underlie its anticancer activity. Overall, this study provides the first characterization of N. miranda flower extracts, particularly the ethanol fraction, as a promising source of multifunctional bioactive compounds with possible applications in cosmetics, antidiabetic therapy, and cancer treatment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 2611 KiB  
Article
Enhancing the Cosmetic Potential of Aloe Vera Gel by Kombucha-Mediated Fermentation: Phytochemical Analysis and Evaluation of Antioxidant, Anti-Aging and Moisturizing Properties
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Wójciak, Ireneusz Sowa, Dariusz Szczepanek and Zofia Nizioł-Łukaszewska
Molecules 2025, 30(15), 3192; https://doi.org/10.3390/molecules30153192 - 30 Jul 2025
Cited by 1 | Viewed by 653
Abstract
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria [...] Read more.
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria and yeast, carried out for 10 and 20 days (samples F10 and F20, respectively). The resulting ferments and unfermented gel were subjected to chromatographic analysis to determine the content of biologically active compounds. The permeability and accumulation of these compounds in pig skin were evaluated. In addition, the methods of DPPH, ABTS and the determination of intracellular free radical levels in keratinocytes (HaCaT) and fibroblasts (HDF) cell lines were used to determine antioxidant potential. The results showed a higher content of phenolic acids and flavonoids and better antioxidant properties of the ferments, especially after 20 days of fermentation. Cytotoxicity tests against HaCaT and HDF cells confirmed the absence of toxic effects; moreover, samples at the concentrations tested (mainly 10 and 25 mg/mL) showed cytoprotective effects. The analysis of enzymatic activity (collagenase, elastase and hyaluronidase) by the ELISA technique showed higher levels of inhibition for F10 and F20. The kombucha ferments also exhibited better moisturizing properties and lower levels of transepidermal water loss (TEWL), confirming their cosmetic potential. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

14 pages, 8944 KiB  
Article
Nano-Hydroxyapatite-Based Mouthwash for Comprehensive Oral Care: Activity Against Bacterial and Fungal Pathogens with Antioxidant and Anti-Inflammatory Action
by Tomasz M. Karpiński, Magdalena Paczkowska-Walendowska and Judyta Cielecka-Piontek
Materials 2025, 18(15), 3567; https://doi.org/10.3390/ma18153567 - 30 Jul 2025
Viewed by 717
Abstract
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, [...] Read more.
Background/Objectives: The growing demand for biocompatible and fluoride-free alternatives in oral care has led to the development of formulations containing nano-hydroxyapatite (nanoHAP). This study aimed to evaluate the antimicrobial, antibiofilm, antioxidant, and anti-inflammatory properties of a novel mouthwash containing nanoHAP, zinc lactate, D-panthenol, licorice extract, and cetylpyridinium chloride, with particular focus on its efficacy against Staphylococcus aureus and its biofilm on various dental materials. Methods: The antimicrobial activities of the mouthwash KWT0000 and control product ELM were assessed via minimal inhibitory concentration (MIC) testing against selected Gram-positive and Gram-negative bacteria and Candida fungi. Antibiofilm activity was evaluated using fluorescence and digital microscopy following 1-h exposure to biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The efficacy was compared across multiple dental materials, including titanium, zirconia, and PMMA. Antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and anti-inflammatory potential via hyaluronidase inhibition. Results: KWT0000 exhibited strong antimicrobial activity against S. aureus and C. albicans (MICs: 0.2–1.6%) and moderate activity against Gram-negative strains. Fluorescence imaging revealed significant biofilm disruption and bacterial death after 1 h. On metallic surfaces, especially polished titanium and zirconia, KWT0000 reduced S. aureus biofilm density considerably. The formulation also demonstrated superior antioxidant (55.33 ± 3.34%) and anti-inflammatory (23.33 ± 3.67%) activity compared to a fluoride-based comparator. Conclusions: The tested nanoHAP-based mouthwash shows promising potential in antimicrobial and antibiofilm oral care, particularly for patients with dental implants. Its multifunctional effects may support not only plaque control but also soft tissue health. Full article
Show Figures

Figure 1

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 468
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 596
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 2229 KiB  
Article
Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions
by Nara Yaowiwat, Pingtawan Bunmark, Siripat Chaichit, Worrapan Poomanee and Karnkamol Trisopon
Cosmetics 2025, 12(4), 151; https://doi.org/10.3390/cosmetics12040151 - 15 Jul 2025
Viewed by 1007
Abstract
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes [...] Read more.
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes associated with anti-aging and anti-inflammatory activities. In addition, the low-energy nanoemulsions based on optimally formulated polyglycerol fatty acid esters (PGFEs), developed through D-optimality, were designed for the incorporation of HSF extract. The result revealed that HSF is a rich source of diverse phenolic and flavonoid compounds that contribute to its remarkable antioxidant capacity. Molecular docking analysis indicates that its compounds exhibit anti-aging and anti-inflammatory activities, particularly through collagenase, hyaluronidase, and TNF-α inhibition. Furthermore, D-optimality revealed that HSF-loaded nanoemulsions can be fabricated by a surfactant to oil ratio (SOR) of 2:1 with a ratio of low hydrophilic-lipophilic balance (HLB) surfactant to high HLB surfactant (LHR) of 1:2. Polyglyceryl-6 laurate as a high HLB surfactant produced the optimal nanoemulsion with small particle size and possessed an encapsulation efficiency (EE) of 74.32 ± 0.19%. This is the first report to combine D-optimal design-based nanoemulsion development with a multi-level analysis of HSF, including phytochemical profiling, antioxidant evaluation, and in silico molecular docking. These findings highlight that HSF-loaded polyglycerol fatty acid ester-based nanoemulsions could be a skin health-promoting ingredient and effective alternative for a variety of skincare applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

23 pages, 3707 KiB  
Article
Structural and Functional Profiling of Water-Extracted Polypeptides from Periplaneta americana: A Multifunctional Cosmetic Bioactive Agent with Antioxidative and Anti-Inflammatory Properties
by Xinyu Sun, Zhengyang Zhang, Jingyao Qu, Deyun Yao, Zeyuan Sun, Jingyi Zhou, Jiayuan Xie, Mingyang Zhou, Xiaodeng Yang and Ling Wang
Molecules 2025, 30(14), 2901; https://doi.org/10.3390/molecules30142901 - 9 Jul 2025
Viewed by 588
Abstract
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which [...] Read more.
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which were below 1000 Da, predominantly consisting of tri-, tetra-, and octapeptides. Monosaccharide profiling detected D-(+)-galactose, and quantitative assays determined the contents of total phenolics (12.28 mg/g), flavonoids (15.50 mg/g), proteins (85.84 mg/g), and total sugars (17.62 mg/g). The biological activities of the extract were systematically evaluated. The peptide fraction inhibited hyaluronidase activity by 58% at 5 mg/mL, suggesting protection of extracellular matrix integrity. In HaCaT keratinocytes, it promoted cell proliferation by 62.6%, accelerated scratch wound closure by 54%, upregulated Wnt-10b and β-catenin expression, and reduced intracellular ROS levels under oxidative stress. In LPS-stimulated RAW 264.7 macrophages, the extract decreased TNF-α, IL-6, and IL-1β production by 30%, 25%, and 28%, respectively, reduced MDA levels by 35.2%, and enhanced CAT and SOD activities by 12.3% and 60.3%. In vivo, complete closure of full-thickness skin wounds in mice was achieved by day 14. Safety evaluations using the chick chorioallantoic membrane assay and human patch tests confirmed the extract to be non-irritating and non-toxic. These findings highlight Periplaneta americana extract as a promising multifunctional bioactive ingredient for cosmetic and dermatological applications. Further studies on its active components, mechanisms of action, and clinical efficacy are warranted to support its development in skin health and aesthetic medicine. Full article
Show Figures

Figure 1

26 pages, 2898 KiB  
Article
Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties
by Pimporn Anantaworasakul, Weeraya Preedalikit, Phunsuk Anantaworasakul, Sudarshan Singh, Aekkhaluck Intharuksa, Warunya Arunotayanun, Mingkwan Na Takuathung, Songwut Yotsawimonwat and Chuda Chittasupho
Gels 2025, 11(7), 494; https://doi.org/10.3390/gels11070494 - 26 Jun 2025
Viewed by 681
Abstract
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), [...] Read more.
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), Tai Bai-yao (KY), and Kan Keaw (KG). Kratom NPs were prepared using a solvent displacement method. The resulting nanoparticles (NPs) exhibited sizes of 201.9–256.2 nm, polydispersity indices (PDI) below 0.3, and a zeta potential between −22.6 and −29.6 mV. The phytochemical analysis revealed that KG and KY extracts contained the highest total phenolic content (TPC) and total flavonoid content (TFC), which were mostly retained after NP formulation. The HPLC analysis confirmed HK as the richest source of mitragynine (9.97 ± 0.10% w/w), while NP formulations displayed slightly reduced levels. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays revealed enhanced radical scavenging in nanoparticle formulations, with IC50 values ranging from 151.23 to 199.87 µg/mL (DPPH) and 207.37 to 272.83 µg/mL (ABTS). All formulations exhibited a significant inhibition of collagenase (80.56 ± 1.60 to 97.23 ± 0.29%), elastase (45.46 ± 6.53 to 52.19 ± 1.20%), and hyaluronidase (83.23 ± 2.34 to 91.67 ± 3.56%), with nanoparticle forms showing superior enzyme inhibition. Notably, nanoparticle formulations exhibited superior inhibitory effects compared to crude extracts. HaCaT cytotoxicity tests confirmed high biocompatibility (IC50 > 700 µg/mL), especially for KD and KG NPs. The NP-loaded gels demonstrated acceptable physicochemical stability after heating/cooling cycle testing, with pH (7.27 to 7.88), viscosity (10.719 to 12.602 Pa·s), and favorable visual and textural properties. In summary, KG and KY cultivars emerged as the most promising cosmeceutical candidates due to their superior phytochemical content, antioxidant capacity, enzyme-inhibitory activities, and formulation performance. These findings support the potential use of KG NP and KY NP-loaded gels as multifunctional cosmeceutical agents for antioxidant protection, anti-aging, and skin rejuvenation. Full article
Show Figures

Figure 1

15 pages, 1396 KiB  
Article
Ultrasound-Assisted Extraction and Microencapsulation of Durvillaea incurvata Polyphenols: Toward a Stable Anti-Inflammatory Ingredient for Functional Foods
by Nicolás Muñoz-Molina, Javier Parada, Angara Zambrano, Carina Chipon, Paz Robert and María Salomé Mariotti-Celis
Foods 2025, 14(13), 2240; https://doi.org/10.3390/foods14132240 - 25 Jun 2025
Viewed by 450
Abstract
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, [...] Read more.
Durvillaea incurvata, a Chilean brown seaweed, exhibits high antioxidant activity and polyphenol content, positioning it as a promising candidate for developing bioactive food ingredients. This study evaluated the anti-inflammatory activity of an ethanolic extract of Durvillaea incurvata, produced via ultrasound-assisted extraction, and its subsequent microencapsulation to obtain a functional food-grade ingredient. The extract’s anti-inflammatory capacity was assessed in vitro through hyaluronidase inhibition, and its cytotoxicity was evaluated using gastrointestinal cell models (HT-29 and Caco-2). Microencapsulation was performed by spray-drying with maltodextrin, and encapsulation efficiency (EE) was optimized using response surface methodology. Characterization included scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The extract exhibited low cytotoxicity (cell viability > 75%). Optimal encapsulation conditions (inlet temperature: 198.28 °C, maltodextrin: 23.11 g/100 g) yielded an EE of 72.7% ± 1.2% and extract recovery (R) of 45.9% ± 2.4%. The microparticles (mean diameter, 2.75 µm) exhibited a uniform morphology, shell formation, glassy microstructure, and suitable physicochemical properties (moisture, 3.4 ± 0.1%; water activity, 0.193 ± 0.004; hygroscopicity, 30.3 ± 0.4 g/100 g) for food applications. These findings support the potential of microencapsulated Durvillaea incurvata extract as an anti-inflammatory ingredient for functional food development. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

19 pages, 2030 KiB  
Article
From Ethnopharmacology to Active Compound: Effects of Traditional Plant Extracts on Varicose Vein-Related Enzymes and Isolation of Active Flavonoids from Helichrysum plicatum DC. subsp. plicatum
by Tugsen Buyukyildirim, F. Sezer Senol Deniz, Merve Yuzbasioglu Baran, Ece Salihoglu, Mustafa Abdullah Yilmaz and Osman Tugay
Pharmaceuticals 2025, 18(6), 926; https://doi.org/10.3390/ph18060926 - 19 Jun 2025
Viewed by 677
Abstract
Background: Varicose veins and chronic venous insufficiency are chronic venous disorders involving abnormalities in the venous system. Inflammation, an increase in proteolytic enzymes, and free radicals are important factors that play a role in the varicose vein pathology. Methods: In this study, the [...] Read more.
Background: Varicose veins and chronic venous insufficiency are chronic venous disorders involving abnormalities in the venous system. Inflammation, an increase in proteolytic enzymes, and free radicals are important factors that play a role in the varicose vein pathology. Methods: In this study, the antioxidant properties and inhibitor activities of 17 plant extracts used to treat varicose veins in traditional medicine were evaluated against varicose veins-related enzymes (hyaluronidase, elastase, collagenase, lipooxygenase, prolylendopeptidase, and xanthine oxidase). The most effective compounds responsible for the activity of the Helichrysum plicatum subsp. plicatum extract were isolated by open column chromatography techniques. The active compounds were determined to be naringenin, apigenin, and luteolin by spectroscopic methods. In the activity-guided isolation study, the xanthine oxidase enzyme inhibition method was used. Results: The fractions containing naringenin and apigenin (IC50 = 0.269 ± 0.009 µg/mL) and apigenin and luteolin (IC50 = 0.285 ± 0.019 µg/mL) compounds showed synergistic and strong effects against xanthine oxidase and were found to be as active as the positive control allopurinol (IC50 = 0.250 ± 0.006 µg/mL). In the LC-MS/MS analysis of the Helichrysum plicatum extract, quinic acid (22.649 mg compound/g extract), chlorogenic acid (14.573 mg/g extract), isoquercitrin (14.371 mg/g extract), cosmosin (9.885 mg/g extract), and astragalin (11.506 mg/g extract) were detected as the major components. Naringenin, apigenin, and luteolin were detected at concentrations of 1.457, 2.518, and 1.368 mg/g in the extract, respectively. Conclusions: In conclusion, it is predicted that the combination of naringenin, apigenin, and luteolin has a promising use as a conservative treatment option for diseases associated with varicose veins due to their synergistic effects with each other. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

24 pages, 3224 KiB  
Article
Multi-Target Anti-Aging Mechanisms of Multani Mitti (Fuller’s Earth): Integrating Enzyme Inhibition and Molecular Docking for Cosmeceuticals
by Muhammad Javid Iqbal, Pía Loren, Viviana Burgos and Luis A. Salazar
Cosmetics 2025, 12(3), 124; https://doi.org/10.3390/cosmetics12030124 - 13 Jun 2025
Viewed by 2845
Abstract
The growing demand for natural anti-aging ingredients necessitates scientific validation of traditional cosmetic materials. Multani Mitti (MM), a clay widely used in South Asian traditional skincare, lacks comprehensive chemical and biological characterization. This study employed a multi-analytical approach to investigate MM’s anti-aging potential [...] Read more.
The growing demand for natural anti-aging ingredients necessitates scientific validation of traditional cosmetic materials. Multani Mitti (MM), a clay widely used in South Asian traditional skincare, lacks comprehensive chemical and biological characterization. This study employed a multi-analytical approach to investigate MM’s anti-aging potential through chemical analysis, enzyme inhibition studies, and in silico evaluations. Five commercial MM samples were pooled and analyzed using instrumental neutron activation analysis (INAA) and Gas Chromatography–Mass Spectrometry (GC-MS). INAA revealed silicon as the predominant inorganic constituent (169.3742 mg/g), while GC-MS identified 13 bioactive compounds, with Beta-sitosterol (15.45% area), Docosanamide (12.36% area), and Cyclohexasiloxane (9.80% area) being the most abundant. MM demonstrated significant enzyme inhibition against key aging-related enzymes, with notably strong effects on hyaluronidase (IC50: 18 μg/mL) and tyrosinase (IC50: 27 μg/mL), outperforming standard inhibitors. The antioxidant activity showed moderate effectiveness (IC50: 31.938 μg/mL) compared to ascorbic acid (IC50: 8.5 μg/mL). Molecular docking studies of identified compounds against hyaluronidase (PDB: 1FCV) and tyrosinase (PDB: 3NQ1) revealed Beta-sitosterol and Benzyl-piperazine-carboxamide as the most promising candidates, showing strong binding affinities (−8.5 and −8.6 kcal/mol, respectively) and favorable ADMET profiles. This comprehensive characterization provides the first scientific evidence supporting MM’s traditional use in skincare and identifies specific compounds that may contribute to its anti-aging properties, warranting further investigation for modern cosmetic applications. Full article
Show Figures

Figure 1

22 pages, 517 KiB  
Article
Erica spiculifolia Salisb. (Balkan Heath): A Focus on Metabolic Profiling and Antioxidant and Enzyme Inhibitory Properties
by Reneta Gevrenova, Anna Szakiel, Cezary Pączkowski, Gokhan Zengin, Inci Kurt-Celep, Alexandra Stefanova and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(11), 1648; https://doi.org/10.3390/plants14111648 - 28 May 2025
Viewed by 600
Abstract
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts [...] Read more.
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts from E. spiculifolia aerial parts harvested at the early and full flowering stage. Chlorogenic acid and proanthocyanidin tetra- and trimer A, B-type together with quercitrin and (+) catechin were the predominant compounds in the semi-quantitative analysis. Neutral triterpenoids, triterpenoid acids and phytosterols were determined in apolar extracts by gas chromatography–mass spectrometry. Triterpenoid acids accounted for 80% of the total triterpenoid content, dominated by ursolic and oleanolic acid, reaching up to 32.2 and 6.1 mg/g dw, respectively. Ursa/olean-2,12-dien-28-oic acids and 3-keto-derivatives together with α-amyrin acetate as a chemotaxonomic marker, α-amyrenone, α- and β-amyrin were evaluated. Total phenolic and flavonoid contents were 83.85 ± 0.89 mg gallic acid equivalents/g and 78.91 ± 0.41 mg rutin equivalents/g, respectively. The extract actively scavenged DPPH and ABTS radicals (540.01 and 639.11 mg Trolox equivalents (TE)/g), possessed high potential to reduce copper and iron ions (660.32 and 869.22 mg TE/g, respectively), and demonstrated high metal chelating capacity (15.57 Ethylenediaminetetraacetic acid equivalents/g). It exhibited prominent anti-lipase (18.32 mg orlistat equivalents/g) and anti-tyrosinase (71.90 mg kojic acid equivalents/g) activity. The extract inhibited α-glucoside (1.35 mmol acarbose equivalents/g) and acetylcholinesterase (2.56 mg galanthamin equivalents/g), and had moderate effects on α-amylase, elastase, collagenase and hyaluronidase. Balkan heath could be recommended for raw material production with antioxidant and enzyme inhibitory properties. Full article
Show Figures

Figure 1

Back to TopTop