Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = human trafficking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 131
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 - 31 Jul 2025
Viewed by 236
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 418
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

39 pages, 3100 KiB  
Review
RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis
by Richard A. McDonald, Armando Varela-Ramirez and Amanda K. Ashley
Biology 2025, 14(8), 936; https://doi.org/10.3390/biology14080936 - 25 Jul 2025
Viewed by 498
Abstract
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades [...] Read more.
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies. This narrative review examines RAS genes and Ras proteins in both housekeeping functions, such as cell growth, apoptosis, and protein trafficking, as well as in tumorigenesis, integrating insights from human (HRAS, KRAS, NRAS), mouse (Hras, Kras, Nras), and Drosophila melanogaster (ras) models. While RAS mutations are tightly linked to human tumors, the interplay between their standard and oncogenic functions remains complex. Even within the same tissue, distinct cancer pathways—such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways—can drive varied disease courses, complicating treatment. Advanced-stage cancers add further challenges, including heterogeneity, protective microenvironments, drug resistance, and adaptive progression. This synthesis organizes current knowledge of RAS gene regulation and Ras protein function from genomic alterations and intracellular signaling to membrane dynamics and extracellular interactions, offering a layered perspective on the Ras pathway’s role in both housekeeping and tumorigenic contexts. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

28 pages, 2012 KiB  
Article
The Convergence of Trafficking and Migrant Smuggling in West Africa: Migration Pressure Factors and Criminal Actors
by Concepción Anguita-Olmedo
Soc. Sci. 2025, 14(8), 447; https://doi.org/10.3390/socsci14080447 - 22 Jul 2025
Viewed by 529
Abstract
In West Africa, there is a very close link between the phenomenon of trafficking and migrant smuggling. This article will analyze the pressure elements and the causes that drive sub-Saharan people to migrate, placing themselves in the hands of criminal networks that end [...] Read more.
In West Africa, there is a very close link between the phenomenon of trafficking and migrant smuggling. This article will analyze the pressure elements and the causes that drive sub-Saharan people to migrate, placing themselves in the hands of criminal networks that end up exploiting them—women and minors sexually, and men through forced labor. The main corridors departing from West Africa and the characteristics of the criminal groups exercising criminal governance will also be addressed. This research has used both primary and secondary sources, as well as empirical fieldwork consisting of interviews with security force officials, international humanitarian aid organizations, and academic experts on migration issues related to trafficking and smuggling. Our research reveals that the origin of migration is multifactorial. The violence experienced in West Africa, but also the misgovernance, the lack of opportunities for a very young population with limited prospects, and the human insecurity affecting the entire region, are the main reasons that compel people to migrate. In these migration processes, the safety of migrants is compromised as they are forced to start their journey through clandestine means, which exposes them to trafficking networks and thus to violence and exploitation. It is along the migration routes where trafficking and migrant smuggling converge. Full article
(This article belongs to the Collection Tackling Organized Crime and Human Trafficking)
Show Figures

Figure 1

27 pages, 1146 KiB  
Review
Biological Modulation of Autophagy by Nanoplastics: A Current Overview
by Francesco Fanghella, Mirko Pesce, Sara Franceschelli, Valeria Panella, Osama Elsallabi, Tiziano Lupi, Benedetta Rizza, Maria Giulia Di Battista, Annalisa Bruno, Patrizia Ballerini, Antonia Patruno and Lorenza Speranza
Int. J. Mol. Sci. 2025, 26(15), 7035; https://doi.org/10.3390/ijms26157035 - 22 Jul 2025
Viewed by 370
Abstract
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. [...] Read more.
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. This review synthesizes current evidence on the interactions between NPs and autophagic pathways across diverse biological systems. Findings indicate that NPs can trigger autophagy as an early cellular response; however, prolonged exposure may lead to autophagic dysfunction, contributing to impaired cell viability and disrupted signaling. Particular attention is given to the physiochemical properties of NPs such as size, surface charge, and polymer type, which influence cellular uptake and intracellular trafficking. We also highlight key mechanistic pathways, including oxidative stress and mTOR modulation. Notably, most available studies focus almost exclusively on polystyrene (PS)-based NPs, with limited data on other types of polymers, and several reports lack comprehensive assessment of autophagic flux or downstream effects. In conclusion, a better understanding of NP–autophagy crosstalk—particularly beyond PS—is crucial to evaluate the real toxic potential of NPs and guide future research in human health and nanotechnology. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Figure 1

15 pages, 2357 KiB  
Article
Development of a Novel, Highly Sensitive System for Evaluating Ebola Virus Particle Formation
by Wakako Furuyama, Miako Sakaguchi, Hanako Ariyoshi and Asuka Nanbo
Viruses 2025, 17(7), 1016; https://doi.org/10.3390/v17071016 - 19 Jul 2025
Viewed by 456
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently [...] Read more.
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently target the viral particle formation process. In this study, we established a simple and highly sensitive screening system to evaluate VP40-mediated virus-like particle (VLP) formation under biosafety level −2 conditions. The system uses the HiBiT luminescence-based reporter fused to VP40, allowing for the detection of VP40 release. Our results demonstrate that the HiBiT sequence fused at the N-terminus [HiBiT-VP40 (N)] retains VP40′s ability to form VLPs, supporting its use as a functional reporter. Furthermore, we validated the system by assessing the role of Rab11-dependent trafficking in VP40-mediated budding and by evaluating the effect of nocodazole, a microtubule depolymerizer, on VLP release. This novel screening system provides a convenient and reliable platform for screening potential inhibitors targeting the late stages of EBOV infection, including viral particle formation and release. Additionally, its potential adaptability to other filoviruses suggests wide applicability in the discovery and development of additional novel therapeutic agents. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 287
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

26 pages, 5665 KiB  
Article
A New GlyT2 Variant Associated with Hyperekplexia
by Jorge Sarmiento-Jiménez, Raquel Felipe, Enrique Núñez, Alejandro Ferrando-Muñoz, Cristina Benito-Muñoz, Federico Gago, Jesús Vázquez, Emilio Camafeita, Emma Clement, Brian Wilson and Beatriz López-Corcuera
Int. J. Mol. Sci. 2025, 26(14), 6753; https://doi.org/10.3390/ijms26146753 - 14 Jul 2025
Viewed by 238
Abstract
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. [...] Read more.
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. Glycinergic interneurons preserve their identity by the activity of the surface glycine transporter GlyT2, which supplies glycine to presynaptic terminals to maintain glycine content in synaptic vesicles. Loss-of-function mutations in the GlyT2 gene (SLC6A5) cause a presynaptic form of human hyperekplexia. Here, we describe a new GlyT2 variant found in an infantile patient diagnosed with hyperekplexia. A missense mutation in the open reading frame of the GlyT2 gene inherited in homozygosity caused the substitution G449E in a residue highly conserved across the phylogenetic scale. The sequences of the glycine receptor genes GLRA1 and GLRB did not show abnormalities. We expressed the recombinant GlyT2 variant in heterologous cells and analyzed its pathogenic mechanism. The transporter was totally inactive, behaving as a bona fide loss-of-function mutant. Furthermore, the mutation promoted the abnormal insertion of the protein into the membrane, leading to its large incorporation into lipid rafts. However, there was no apparent alteration of wild-type trafficking upon mutant coexpression, as the mutant was prematurely degraded from the endoplasmic reticulum. Rescue with chemical chaperones was not possible for this mutant. Proteomics demonstrated that the expression of the mutant induced the unfolded protein response and interfered with raft-dependent processes. Therefore, the new variant causes a loss of function regarding GlyT2 activity but a gain of function as a cell proteostasis disturber. Full article
(This article belongs to the Special Issue Genetic and Genomic Diagnostics for Rare Diseases)
Show Figures

Graphical abstract

24 pages, 360 KiB  
Article
Depression and Anxiety Outcomes Among Young Adults Who Self-Reported Experiencing Commercial Sexual Exploitation in Adolescence
by Sarah M. Godoy, Adam R. Englert, Nofar Mazursky, Luisa Prout and William J. Hall
Int. J. Environ. Res. Public Health 2025, 22(7), 1062; https://doi.org/10.3390/ijerph22071062 - 2 Jul 2025
Viewed by 476
Abstract
The commercial sexual exploitation (CSE) of children is a distinct form of sexual trauma, resulting in immediate mental health issues. Few studies explore associations between family-level factors in adolescence and health outcomes in adulthood among this population. Utilizing a nationally representative dataset, we [...] Read more.
The commercial sexual exploitation (CSE) of children is a distinct form of sexual trauma, resulting in immediate mental health issues. Few studies explore associations between family-level factors in adolescence and health outcomes in adulthood among this population. Utilizing a nationally representative dataset, we explored differences and associations between mental health outcomes and domains of the Family Health Development framework among respondents who self-reported CSE (N = 502; mean age = 15.03, SD = 1.34; 67% male; 50% white). We conducted ordinary least squares and binary logistic regressions using a hierarchical approach to analyze the CES-D depression scale, anxious personality scale, and self-reported diagnoses of depression and anxiety/panic disorder. At Wave IV, when participants were aged 24–32, 20% of participants reported ever having a diagnosis of depression, and 12% reported ever having an anxiety/panic disorder diagnosis. Family receipt of public assistance during adolescence significantly predicted depression and anxiety symptoms in adulthood, highlighting associations between family structure and mental health. Gender and race significantly predicted anxiety symptoms and having a diagnosis of depression and anxiety/panic disorder. Findings underscore the need for targeted training and comprehensive health screenings for providers to better understand and address the long-term mental health needs of CSE-impacted groups. Full article
17 pages, 6172 KiB  
Article
Molecular Determinants of TMC Protein Biogenesis and Trafficking
by Dedong Shao, Jinru Tan, Xiaozhi Fan, Yilai Shu, Qianhui Qu and Yi-Quan Tang
Int. J. Mol. Sci. 2025, 26(13), 6356; https://doi.org/10.3390/ijms26136356 - 1 Jul 2025
Viewed by 411
Abstract
Transmembrane channel-like (TMC) proteins are essential for hearing and balance; however, the molecular mechanisms that regulate their proper folding and membrane targeting remain poorly understood. Here, we establish Caenorhabditis elegans as a genetically tractable model to dissect TMC-1 trafficking by combining CRISPR knock-in [...] Read more.
Transmembrane channel-like (TMC) proteins are essential for hearing and balance; however, the molecular mechanisms that regulate their proper folding and membrane targeting remain poorly understood. Here, we establish Caenorhabditis elegans as a genetically tractable model to dissect TMC-1 trafficking by combining CRISPR knock-in strains, super-resolution microscopy, and genome-wide forward genetic screening. We show that TMC-1 robustly localizes to the plasma membrane in both neurons and muscle cells and identify a conserved valine (V803) in transmembrane domain 9 (TM9) as critical for its biogenesis and trafficking. Structural analyses guided by AlphaMissense and AlphaFold uncover two evolutionarily conserved functional hotspots, one in the extracellular loop adjacent to TM9 and the other in the TMC signature motif, which are interconnected by an evolutionarily conserved disulfide bond. Disrupting this bond in worm TMC-1 abolishes its cell-surface localization and destabilizes the mechanotransduction channel complex. Together, these findings provide a structural framework for interpreting deafness-causing mutations in human TMC1 and highlight disulfide-bond-linked hotspots as key molecular determinants of TMC protein biogenesis and trafficking. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives: 2nd Edition)
Show Figures

Figure 1

22 pages, 4781 KiB  
Article
Promoting Immune Response of Human Vascular Endothelial Cells by Bevacizumab: Insights into the Immune Supportive Role of Anti-VEGF Therapy
by Haiyan Jia, Anna Nowocin, Chris Burns and Meenu Wadhwa
Int. J. Mol. Sci. 2025, 26(13), 6280; https://doi.org/10.3390/ijms26136280 - 29 Jun 2025
Viewed by 473
Abstract
Compelling clinical evidence strongly indicates that anti-angiogenesis therapeutics including Bevacizumab, a humanised anti-VEGF mAb, can alleviate the resistance to immunotherapy. We explored the direct modulation of Bevacizumab on endothelial cell (EC) immune response including surface expression of adhesion and MHC molecules and EC-elicited [...] Read more.
Compelling clinical evidence strongly indicates that anti-angiogenesis therapeutics including Bevacizumab, a humanised anti-VEGF mAb, can alleviate the resistance to immunotherapy. We explored the direct modulation of Bevacizumab on endothelial cell (EC) immune response including surface expression of adhesion and MHC molecules and EC-elicited proliferation of immune cells under inflammatory conditions. Flow cytometry showed that addition of VEGF inhibited TNF-α stimulation of expression of ICAM-1 and VCAM-1 on HUVECs, whereas Bevacizumab enhanced this TNF-α-stimulated expression. The presence of MHC Class I on HUVECs was decreased by VEGF and increased by TNF-α, respectively. Bevacizumab reversed VEGF downregulation and promoted TNF-α upregulation of MHC class I expression, suggesting that anti-VEGF treatment can boost the endothelial immunological reaction, a prerequisite for immune cell trafficking. Functionally, real-time monitoring of the proliferation of human PBMCs co-cultured on HUVEC monolayers over 3 days showed opposing effects on the proliferation of PBMCs between VEGF and TNF-α. Consistently, Bevacizumab antagonised VEGF suppression and sensitized TNF-α activation of PBMC growth over the time course. In line with these findings, Bevacizumab increased the surface expression of CD69 on VEGF-treated T cells collected from PBMCs after 3-day co-cultures with HUVECs. Furthermore, the proliferation of CD3+, CD8+ and CD4+ T cells was promoted via Bevacizumab. Collectively, this study demonstrates that targeting VEGF can enhance the immune response of ECs required for T cell recruitment. Our findings provide insights to a deeper understanding of increased vascular inflammatory response conferred by anti-VEGF treatment in addition to inhibiting angiogenesis, which supports its favourable dual role in the positive immunological synergism with immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 1449 KiB  
Article
Cloning, Expression and Functional Characterization of V. vinifera CAT2 Arginine Transporter
by Lorena Pochini, Teresa Maria Rosaria Regina, Maria Iolanda Cerbelli, Nicoletta Gallo, Federica Costantino, Michele Galluccio and Cesare Indiveri
Int. J. Mol. Sci. 2025, 26(13), 6259; https://doi.org/10.3390/ijms26136259 - 28 Jun 2025
Viewed by 313
Abstract
The amino acid membrane transporters of grape species take part in metabolic pathways that play crucial roles in nitrogen trafficking and in the synthesis of secondary metabolites. Therefore, identifying these amino acid transporters and defining their functional properties might have further applications in [...] Read more.
The amino acid membrane transporters of grape species take part in metabolic pathways that play crucial roles in nitrogen trafficking and in the synthesis of secondary metabolites. Therefore, identifying these amino acid transporters and defining their functional properties might have further applications in crop improvement and, hence, relevance to human nutrition. The VvCAT2 (Cation Amino acid Transporter) transporter cDNA has been isolated and cloned into a specific plasmid for over-expression in Escherichia coli. The expressed protein, after purification by Ni2+-chelating chromatography, has been functionally characterized in an experimental model of proteoliposomes by measuring the uptake of radiolabeled compounds. Arginine was revealed to be the best substrate, confirming the role of CAT2 in nitrogen trafficking in plant cells and within sub-cellular spaces, given its plausible localization in vacuoles. The transporter activity is modulated by pH, osmotic imbalance and ATP. The transport kinetics have been measured. Overall, the obtained data indicate the capacity of VvCAT2 in transporting arginine, making it a possible target for crop improvement with a relevance to human health. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 324 KiB  
Article
Forced Fraud: The Financial Exploitation of Human Trafficking Victims
by Michael Schidlow
Soc. Sci. 2025, 14(7), 398; https://doi.org/10.3390/socsci14070398 - 23 Jun 2025
Viewed by 1030
Abstract
Human trafficking, a grave violation of human rights, frequently intersects with financial crimes, notably identity theft and coercive debt accumulation. This creates complex challenges for victims, survivors, and law enforcement. Victims of human trafficking are often coerced and/or threatened into committing various forms [...] Read more.
Human trafficking, a grave violation of human rights, frequently intersects with financial crimes, notably identity theft and coercive debt accumulation. This creates complex challenges for victims, survivors, and law enforcement. Victims of human trafficking are often coerced and/or threatened into committing various forms of crime, referred to as “forced criminality.” In recent years, this trend of criminality has moved from violent crimes to financial crimes and fraud, including identity theft, synthetic identity fraud, and serving as money mules. This phenomenon, termed “forced fraud”, exacerbates the already severe trauma experienced by victims (referred to as both victims and survivors throughout, consistent with trauma-informed terminology) trapping them in a cycle of financial instability and legal complications. Traffickers often coerce their victims into opening credit lines, taking out loans, or committing fraud all in their own names, leading to ruined credit histories and insurmountable debt. These financial burdens make it extremely difficult for survivors to rebuild their lives post-trafficking. This paper explores the mechanisms of forced fraud, its impact on survivors, and the necessary legislative and financial interventions to support survivors. By examining first-hand accounts and social and policy efforts from a range of sources, this paper highlights the urgent need for comprehensive support systems that address both the immediate and long-term financial repercussions of human trafficking. Full article
17 pages, 5218 KiB  
Review
Trafficking and Activation of Henipavirus, Parahenipavirus, and Henipa-like Virus Fusion Proteins
by Chanakha K. Navaratnarajah and Roberto Cattaneo
Viruses 2025, 17(6), 866; https://doi.org/10.3390/v17060866 - 19 Jun 2025
Viewed by 563
Abstract
Henipaviruses are emerging zoonotic viruses that have caused deadly outbreaks in humans and livestock across several regions of the world. The fusion (F) protein of henipaviruses plays a critical role in viral entry into host cells and represents a key determinant of viral [...] Read more.
Henipaviruses are emerging zoonotic viruses that have caused deadly outbreaks in humans and livestock across several regions of the world. The fusion (F) protein of henipaviruses plays a critical role in viral entry into host cells and represents a key determinant of viral pathogenicity. This review provides a comprehensive analysis of current knowledge regarding trafficking, activation, as well as the role in particle assembly, of henipavirus F proteins. We discuss the unique characteristics of henipavirus F proteins compared to other paramyxovirus fusion proteins, with particular emphasis on their distinctive trafficking and activation mechanisms. Attention is also given to novel henipaviruses that have been detected in hosts other than bats, namely rodents and shrews. These viruses are sufficiently different that the International Committee on Taxonomy of Viruses has proposed a new genus for them, the Parahenipaviruses. We discuss how variations in F protein characteristics between Henipaviruses, Parahenipaviruses, and yet-unclassified henipa-like viruses might influence their trafficking and activation. Understanding these molecular mechanisms is crucial for developing effective therapeutic strategies against henipavirus infections and for predicting the emergence of novel henipavirus strains with pandemic potential. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

Back to TopTop