Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (913)

Search Parameters:
Keywords = histogram feature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2239 KiB  
Article
Automatic Delineation of Resistivity Contrasts in Magnetotelluric Models Using Machine Learning
by Ever Herrera Ríos, Mateo Marulanda, Hernán Arboleda, Greg Soule, Erika Lucuara, David Jaramillo, Agustín Cardona, Esteban A. Taborda, Farid B. Cortés and Camilo A. Franco
Processes 2025, 13(7), 2263; https://doi.org/10.3390/pr13072263 - 16 Jul 2025
Abstract
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT [...] Read more.
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT models by employing advanced machine learning and computer vision techniques. This approach commences with data augmentation to enhance the diversity and volume of resistivity data. Subsequently, a bilateral filter was applied to reduce noise while preserving edge details within the resistivity images. To further improve image contrast and highlight significant resistivity variations, contrast-limited adaptive histogram equalization (CLAHE) was employed. Finally, k-means clustering was utilized to segment the resistivity data into distinct groups based on resistivity values, enabling the identification of color features in different centroids. This facilitated the detection of regions with significant resistivity contrasts in the reservoir. From the clustered images, color masks were generated to visually differentiate the groups and calculate the area and proportion of each group within the pictures. Key features extracted from resistivity profiles were used to train unsupervised learning models capable of generalizing across different geological settings. The proposed methodology improves the accuracy of detecting zones with oil potential and offers scalable applicability to different datasets with minimal retraining, applicable to different subsurface environments. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. During initial analyses using only k-means, the resulting optimal value of the silhouette coefficient K was 2. After using bilateral filtering together with contrast-limited adaptive histogram equalization (CLAHE) and validation by an expert, the results were more representative, and six clusters were identified. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 3581 KiB  
Article
Non-Destructive Detection of Pomegranate Blackheart Disease via Near-Infrared Spectroscopy and Soft X-ray Imaging Systems
by Rongke Nie, Xingyi Huang, Xiaoyu Tian, Shanshan Yu, Chunxia Dai, Xiaorui Zhang and Qin Fang
Foods 2025, 14(14), 2454; https://doi.org/10.3390/foods14142454 - 12 Jul 2025
Viewed by 114
Abstract
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and [...] Read more.
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and soft X-ray imaging techniques. The results showed that the optimal NIR-based discriminative model, constructed with a Random Forest (RF) algorithm based on spectra preprocessed by the second-derivative (D2) denoising and a Competitive Adaptive Reweighted Sampling (CARS) algorithm, achieved a prediction set accuracy of 86.00%; the optimal soft X-ray imaging-based discriminative model, built with an RF algorithm using textural features extracted from images preprocessed by median filtering and a Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm combined with gray-level co-occurrence matrix (GLCM) and gray-gradient co-occurrence matrix (GGCM) algorithms, reached a prediction set accuracy of 93.10%. In terms of model performance, the model based on soft X-ray imaging exhibited superior performance. Both techniques possess distinct advantages and limitations yet enable non-destructive detection of pomegranate blackheart disease. Further technical optimizations in the future could provide enhanced support for the healthy development of the pomegranate industry. Full article
Show Figures

Figure 1

15 pages, 959 KiB  
Article
Growth Differentiation Factor 15 Predicts Cardiovascular Events in Peripheral Artery Disease
by Ben Li, Farah Shaikh, Houssam Younes, Batool Abuhalimeh, Abdelrahman Zamzam, Rawand Abdin and Mohammad Qadura
Biomolecules 2025, 15(7), 991; https://doi.org/10.3390/biom15070991 - 11 Jul 2025
Viewed by 205
Abstract
Peripheral artery disease (PAD) is associated with an elevated risk of major adverse cardiovascular events (MACE). Despite this, few reliable biomarkers exist to identify patients at heightened risk of MACE. Growth differentiation factor 15 (GDF15), a stress-responsive cytokine implicated in inflammation, atherosclerosis, and [...] Read more.
Peripheral artery disease (PAD) is associated with an elevated risk of major adverse cardiovascular events (MACE). Despite this, few reliable biomarkers exist to identify patients at heightened risk of MACE. Growth differentiation factor 15 (GDF15), a stress-responsive cytokine implicated in inflammation, atherosclerosis, and thrombosis, has been broadly studied in cardiovascular disease but remains underexplored in PAD. This study aimed to evaluate the prognostic utility of GDF15 for predicting 2-year MACE in PAD patients using explainable statistical and machine learning approaches. We conducted a prospective analysis of 1192 individuals (454 with PAD and 738 without PAD). At study entry, patient plasma GDF15 concentrations were measured using a validated multiplex immunoassay. The cohort was followed for two years to monitor the occurrence of MACE, defined as stroke, myocardial infarction, or death. Baseline GDF15 levels were compared between PAD and non-PAD participants using the Mann–Whitney U test. A machine learning model based on extreme gradient boosting (XGBoost) was trained to predict 2-year MACE using 10-fold cross-validation, incorporating GDF15 and clinical variables including age, sex, comorbidities (hypertension, diabetes, dyslipidemia, congestive heart failure, coronary artery disease, and previous stroke or transient ischemic attack), smoking history, and cardioprotective medication use. The model’s primary evaluation metric was the F1 score, a validated measurement of the harmonic mean of the precision and recall values of the prediction model. Secondary model performance metrics included precision, recall, positive likelihood ratio (LR+), and negative likelihood ratio (LR-). A prediction probability histogram and Shapley additive explanations (SHAP) analysis were used to assess model discrimination and interpretability. The mean participant age was 70 ± SD 11 years, with 32% (n = 386) female representation. Median plasma GDF15 levels were significantly higher in PAD patients compared to the levels in non-PAD patients (1.29 [IQR 0.77–2.22] vs. 0.99 [IQR 0.61–1.63] pg/mL; p < 0.001). During the 2-year follow-up period, 219 individuals (18.4%) experienced MACE. The XGBoost model demonstrated strong predictive performance for 2-year MACE (F1 score = 0.83; precision = 82.0%; recall = 83.7%; LR+ = 1.88; LR− = 0.83). The prediction histogram revealed distinct stratification between those who did vs. did not experience 2-year MACE. SHAP analysis identified GDF15 as the most influential predictive feature, surpassing traditional clinical predictors such as age, cardiovascular history, and smoking status. This study highlights GDF15 as a strong prognostic biomarker for 2-year MACE in patients with PAD. When combined with clinical variables in an interpretable machine learning model, GDF15 supports the early identification of patients at high risk for systemic cardiovascular events, facilitating personalized treatment strategies including multidisciplinary specialist referrals and aggressive cardiovascular risk reduction therapy. This biomarker-guided approach offers a promising pathway for improving cardiovascular outcomes in the PAD population through precision risk stratification. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cardiology 2025)
Show Figures

Figure 1

17 pages, 23834 KiB  
Article
Information Merging for Improving Automatic Classification of Electrical Impedance Mammography Images
by Jazmin Alvarado-Godinez, Hayde Peregrina-Barreto, Delia Irazú Hernández-Farías and Blanca Murillo-Ortiz
Appl. Sci. 2025, 15(14), 7735; https://doi.org/10.3390/app15147735 - 10 Jul 2025
Viewed by 113
Abstract
Breast cancer remains one of the leading causes of mortality among women worldwide, highlighting the critical need for early and accurate detection methods. Traditional mammography, although widely used, has limitations, including radiation exposure and challenges in detecting early-stage lesions. Electrical Impedance Mammography (EIM) [...] Read more.
Breast cancer remains one of the leading causes of mortality among women worldwide, highlighting the critical need for early and accurate detection methods. Traditional mammography, although widely used, has limitations, including radiation exposure and challenges in detecting early-stage lesions. Electrical Impedance Mammography (EIM) has emerged as a non-invasive and radiation-free alternative that assesses the density and electrical conductivity of breast tissue. EIM images consist of seven layers, each representing different tissue depths, offering a detailed representation of the breast structure. However, analyzing these layers individually can be redundant and complex, making it difficult to identify relevant features for lesion classification. To address this issue, advanced computational techniques are employed for image integration, such as the Root Mean Square (CRMS) Contrast and Contrast-Limited Adaptive Histogram Equalization (CLAHE), combined with the Coefficient of Variation (CV), CLAHE-based fusion, weighted average fusion, Gaussian pyramid fusion, and Wavelet–PCA fusion. Each method enhances the representation of tissue features, optimizing the image quality and diagnostic utility. This study evaluated the impact of these integration techniques on EIM image analysis, aiming to improve the accuracy and reliability of computational diagnostic models for breast cancer detection. According to the obtained results, the best performance was achieved using Wavelet–PCA fusion in combination with XGBoost as a classifier, yielding an accuracy rate of 89.5% and an F1-score of 81.5%. These results are highly encouraging for the further investigation of this topic. Full article
(This article belongs to the Special Issue Novel Insights into Medical Images Processing)
Show Figures

Figure 1

13 pages, 2266 KiB  
Article
The Detection and Classification of Grape Leaf Diseases with an Improved Hybrid Model Based on Feature Engineering and AI
by Fatih Atesoglu and Harun Bingol
AgriEngineering 2025, 7(7), 228; https://doi.org/10.3390/agriengineering7070228 - 9 Jul 2025
Viewed by 191
Abstract
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results [...] Read more.
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results in image classification. Therefore, the early detection and classification of grape diseases with the latest artificial intelligence techniques and feature reduction techniques was carried out within the scope of this study. The most well-known convolutional neural network (CNN) architectures, texture-based Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) methods, Neighborhood Component Analysis (NCA), feature reduction methods, and machine learning (ML) techniques are the methods used in this article. The proposed hybrid model was compared with two texture-based and four CNN models. The features from the most successful CNN model and texture-based architectures were combined. The NCA method was used to select the best features from the obtained feature map, and the model was classified using the best-known ML classifiers. Our proposed model achieved an accuracy value of 99.1%. This value shows that our model can be used in the detection of grape diseases. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

25 pages, 2841 KiB  
Article
Dynamic Graph Neural Network for Garbage Classification Based on Multimodal Feature Fusion
by Yuhang Yang, Yuanqing Luo, Yingyu Yang and Shuang Kang
Appl. Sci. 2025, 15(14), 7688; https://doi.org/10.3390/app15147688 - 9 Jul 2025
Viewed by 119
Abstract
Amid the accelerating pace of global urbanization, the volume of municipal solid garbage has surged dramatically, thereby demanding more efficient and precise garbage management technologies. In this paper, we introduce a novel garbage classification approach that leverages a dynamic graph neural network based [...] Read more.
Amid the accelerating pace of global urbanization, the volume of municipal solid garbage has surged dramatically, thereby demanding more efficient and precise garbage management technologies. In this paper, we introduce a novel garbage classification approach that leverages a dynamic graph neural network based on multimodal feature fusion. Specifically, the proposed method employs an enhanced Residual Network Attention Module (RNAM) network to capture deep semantic features and utilizes CIELAB color (LAB) histograms to extract color distribution characteristics, achieving a complementary integration of multimodal information. An adaptive K-nearest neighbor algorithm is utilized to construct the dynamic graph structure, while the incorporation of a multi-head attention layer within the graph neural network facilitates the efficient aggregation of both local and global features. This design significantly enhances the model’s ability to discriminate among various garbage categories. Experimental evaluations reveal that on our self-curated KRHO dataset, all performance metrics approach 1.00, and the overall classification accuracy reaches an impressive 99.33%, surpassing existing mainstream models. Moreover, on the public TrashNet dataset, the proposed method demonstrates equally outstanding classification performance and robustness, achieving an overall accuracy of 99.49%. Additionally, hyperparameter studies indicate that the model attains optimal performance with a learning rate of 2 × 10−4, a dropout rate of 0.3, an initial neighbor count of 20, and 8 attention heads. Full article
Show Figures

Figure 1

26 pages, 4907 KiB  
Article
A Novel Approach Utilizing Bagging, Histogram Gradient Boosting, and Advanced Feature Selection for Predicting the Onset of Cardiovascular Diseases
by Norma Latif Fitriyani, Muhammad Syafrudin, Nur Chamidah, Marisa Rifada, Hendri Susilo, Dursun Aydin, Syifa Latif Qolbiyani and Seung Won Lee
Mathematics 2025, 13(13), 2194; https://doi.org/10.3390/math13132194 - 4 Jul 2025
Viewed by 216
Abstract
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study [...] Read more.
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study leverages three preprocessed cardiovascular datasets, employing the Local Outlier Factor technique for outlier removal and the information gain method for feature selection. Through rigorous experimentation, the proposed model demonstrates superior performance compared to conventional machine learning approaches, such as Logistic Regression, Support Vector Classification, Gaussian Naïve Bayes, Multi-Layer Perceptron, k-nearest neighbors, Random Forest, AdaBoost, gradient boosting, and histogram gradient boosting. Evaluation metrics, including precision, recall, F1 score, accuracy, and AUC, yielded impressive results: 93.90%, 98.83%, 96.30%, 96.25%, and 0.9916 for dataset I; 94.17%, 99.05%, 96.54%, 96.48%, and 0.9931 for dataset II; and 89.81%, 82.40%, 85.91%, 86.66%, and 0.9274 for dataset III. The findings indicate that the proposed prediction model has the potential to facilitate early CVD detection, thereby enhancing preventive strategies and improving patient outcomes. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Decision Making)
Show Figures

Figure 1

22 pages, 3237 KiB  
Article
Local Polar Coordinate Feature Representation and Heterogeneous Fusion Framework for Accurate Leaf Image Retrieval
by Mengjie Ye, Yong Cheng, Yongqi Yuan, De Yu and Ge Jin
Symmetry 2025, 17(7), 1049; https://doi.org/10.3390/sym17071049 - 3 Jul 2025
Viewed by 189
Abstract
Leaf shape is a crucial visual cue for plant recognition. However, distinguishing among plants with high inter-class shape similarity remains a significant challenge, especially among cultivars within the same species where shape differences can be extremely subtle. To address this issue, we propose [...] Read more.
Leaf shape is a crucial visual cue for plant recognition. However, distinguishing among plants with high inter-class shape similarity remains a significant challenge, especially among cultivars within the same species where shape differences can be extremely subtle. To address this issue, we propose a novel shape representation and an advanced heterogeneous fusion framework for accurate leaf image retrieval. Specifically, based on the local polar coordinate system, multiscale analysis, and statistical histograms, we first propose local polar coordinate feature representation (LPCFR), which captures spatial distribution from two orthogonal directions while encoding local curvature characteristics. Next, we present heterogeneous feature fusion with exponential weighting and Ranking (HFER), which enhances the compatibility and robustness of fused features by applying exponential weighted normalization and ranking-based encoding within neighborhood distance measures. Extensive experiments on both species-level and cultivar-level leaf datasets demonstrate that the proposed representation effectively captures shape features, and the fusion framework successfully integrates heterogeneous features, outperforming state-of-the-art (SOTA) methods. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 845 KiB  
Article
Prediction of Uncertainty Ramping Demand in New Power Systems Based on a CNN-LSTM Hybrid Neural Network
by Peng Yu, Zhuang Cai, Hao Zhang, Dai Cui, Hang Zhou, Ruijia Yu and Yibo Zhou
Processes 2025, 13(7), 2088; https://doi.org/10.3390/pr13072088 - 1 Jul 2025
Viewed by 309
Abstract
Under the background of “dual-carbon”, expanding renewable energy grid integration exacerbates grid net load volatility, and system climbing requirements escalate. In this paper, the problem of uncertain ramping demand prediction caused by net load prediction error in new power systems is investigated. First, [...] Read more.
Under the background of “dual-carbon”, expanding renewable energy grid integration exacerbates grid net load volatility, and system climbing requirements escalate. In this paper, the problem of uncertain ramping demand prediction caused by net load prediction error in new power systems is investigated. First, the total system ramping demand calculation model is constructed, and the effects of deterministic and uncertain ramping demand on the total system ramping demand are analyzed. Secondly, a prediction model based on a CNN-LSTM hybrid neural network is proposed for the uncertain ramp-up demand, which extracts the spatial correlation features of the multi-source influencing factors through the convolutional layer, captures the dynamic evolution law in the time series by using the LSTM layer, and realizes the high-precision point prediction and reliable interval prediction by combining the quantile regression method. Finally, the actual operation data and forecast data of a provincial power grid are used for example verification, and the results show that the proposed model outperformed traditional models (SVM, RF, BPNN) and single deep learning models (CNN, LSTM) in point prediction performance, achieving higher prediction accuracy and validating the effectiveness of the spatio-temporal feature extraction module. In terms of interval prediction quality, compared with the histogram and QRF benchmark models, the proposed model achieves a significant reduction in the average width of the prediction interval, average upward ramp-up demand, and average downward ramp-down demand while maintaining 100% interval coverage. This demand realizes a better balance between prediction economic efficiency and safety, providing more reliable technical support for the precise assessment of uncertain ramp-up demand in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 92114 KiB  
Article
Multi-Modal Remote Sensing Image Registration Method Combining Scale-Invariant Feature Transform with Co-Occurrence Filter and Histogram of Oriented Gradients Features
by Yi Yang, Shuo Liu, Haitao Zhang, Dacheng Li and Ling Ma
Remote Sens. 2025, 17(13), 2246; https://doi.org/10.3390/rs17132246 - 30 Jun 2025
Viewed by 287
Abstract
Multi-modal remote sensing images often exhibit complex and nonlinear radiation differences which significantly hinder the performance of traditional feature-based image registration methods such as Scale-Invariant Feature Transform (SIFT). In contrast, structural features—such as edges and contours—remain relatively consistent across modalities. To address this [...] Read more.
Multi-modal remote sensing images often exhibit complex and nonlinear radiation differences which significantly hinder the performance of traditional feature-based image registration methods such as Scale-Invariant Feature Transform (SIFT). In contrast, structural features—such as edges and contours—remain relatively consistent across modalities. To address this challenge, we propose a novel multi-modal image registration method, Cof-SIFT, which integrates a co-occurrence filter with SIFT. By replacing the traditional Gaussian filter with a co-occurrence filter, Cof-SIFT effectively suppresses texture variations while preserving structural information, thereby enhancing robustness to cross-modal differences. To further improve image registration accuracy, we introduce an extended approach, Cof-SIFT_HOG, which extracts Histogram of Oriented Gradients (HOG) features from the image gradient magnitude map of corresponding points and refines their positions based on HOG similarity. This refinement yields more precise alignment between the reference and image to be registered. We evaluated Cof-SIFT and Cof-SIFT_HOG on a diverse set of multi-modal remote sensing image pairs. The experimental results demonstrate that both methods outperform existing approaches, including SIFT, COFSM, SAR-SIFT, PSO-SIFT, and OS-SIFT, in terms of robustness and registration accuracy. Notably, Cof-SIFT_HOG achieves the highest overall performance, confirming the effectiveness of the proposed structural-preserving and corresponding point location refinement strategies in cross-modal registration tasks. Full article
Show Figures

Figure 1

21 pages, 8541 KiB  
Article
Infrared Ship Detection in Complex Nearshore Scenes Based on Improved YOLOv5s
by Xiuwen Liu, Mingchen Liu and Yong Yin
Sensors 2025, 25(13), 3979; https://doi.org/10.3390/s25133979 - 26 Jun 2025
Viewed by 230
Abstract
Ensuring navigational safety in nearshore waters is essential for the sustainable development of the shipping economy. Accurate ship identification and classification are central to this objective, underscoring the critical importance of ship detection technology. However, compared to open-sea surface, dense vessel distributions and [...] Read more.
Ensuring navigational safety in nearshore waters is essential for the sustainable development of the shipping economy. Accurate ship identification and classification are central to this objective, underscoring the critical importance of ship detection technology. However, compared to open-sea surface, dense vessel distributions and complex backgrounds in nearshore areas substantially limit detection efficacy. Infrared vision sensors offer distinct advantages over visible light by enabling reliable target detection in all weather conditions. This study therefore proposes CGSE-YOLOv5s, an enhanced YOLOv5s-based algorithm specifically designed for complex infrared nearshore scenarios. Three key improvements are introduced: (1) Contrast Limited Adaptive Histogram Equalization integrated with Gaussian Filtering enhances target edge sharpness; (2) Replacement of the feature pyramid network’s C3 module with a Swin Transformer-based C3STR module reduces multi-scale false detections; and (3) Implementation of an Efficient Channel Attention mechanism amplifies critical target features. Experimental results demonstrate that CGSE-YOLOv5s achieves a mean average precision (mAP@0.5) of 94.8%, outperforming YOLOv5s by 1.3% and surpassing other detection algorithms. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 3569 KiB  
Article
A High-Accuracy Underwater Object Detection Algorithm for Synthetic Aperture Sonar Images
by Jiahui Su, Deyin Xu, Lu Qiu, Zhiping Xu, Lixiong Lin and Jiachun Zheng
Remote Sens. 2025, 17(13), 2112; https://doi.org/10.3390/rs17132112 - 20 Jun 2025
Viewed by 497
Abstract
Underwater object detection with Synthetic Aperture Sonar (SAS) images faces many problems, including low contrast, blurred edges, high-frequency noise, and missed small objects. To improve these problems, this paper proposes a high-accuracy underwater object detection algorithm for SAS images, named the HAUOD algorithm. [...] Read more.
Underwater object detection with Synthetic Aperture Sonar (SAS) images faces many problems, including low contrast, blurred edges, high-frequency noise, and missed small objects. To improve these problems, this paper proposes a high-accuracy underwater object detection algorithm for SAS images, named the HAUOD algorithm. First, considering SAS image characteristics, a sonar preprocessing module is designed to enhance the signal-to-noise ratio of object features. This module incorporates three-stage processing for image quality optimization, and the three stages include collaborative adaptive Contrast Limited Adaptive Histogram Equalization (CLAHE) enhancement, non-local mean denoising, and frequency-domain band-pass filtering. Subsequently, a novel C2fD module is introduced to replace the original C2f module to strengthen perception capabilities for low-contrast objects and edge-blurred regions. The proposed C2fD module integrates spatial differential feature extraction, dynamic feature fusion, and Enhanced Efficient Channel Attention (Enhanced ECA). Furthermore, an underwater multi-scale contextual attention mechanism, named UWA, is introduced to enhance the model’s discriminative ability for multi-scale objects and complex backgrounds. The proposed UWA module combines noise suppression, hierarchical dilated convolution groups, and dual-dimensional attention collaboration. Experiments on the Sonar Common object Detection dataset (SCTD) demonstrate that the proposed HAUOD algorithm achieves superior performance in small object detection accuracy and multi-scenario robustness, attaining a detection accuracy of 95.1%, which is 8.3% higher than the baseline model (YOLOv8n). Compared with YOLOv8s, the proposed HAUOD algorithm can achieve 6.2% higher accuracy with only 50.4% model size, and reduce the computational complexity by half. Moreover, the HAUOD method exhibits significant advantages in balancing computational efficiency and accuracy compared to mainstream detection models. Full article
Show Figures

Figure 1

25 pages, 5305 KiB  
Article
Pears Internal Quality Inspection Based on X-Ray Imaging and Multi-Criteria Decision Fusion Model
by Zeqing Yang, Jiahui Zhang, Zhimeng Li, Ning Hu and Zhengpan Qi
Agriculture 2025, 15(12), 1315; https://doi.org/10.3390/agriculture15121315 - 19 Jun 2025
Viewed by 313
Abstract
Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive [...] Read more.
Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive approach integrating X-ray imaging and multi-criteria decision (MCD) theory for non-destructive internal defect detection in pears. Internal defects were identified by analyzing grayscale variations in X-ray images. The proposed method combines manual feature-based classifiers, including Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG), with a deep convolutional neural network (DCNN) model within an MCD-based fusion framework. Experimental results demonstrated that the fused model achieved a detection accuracy of 97.1%, significantly outperforming individual classifiers. This approach effectively reduced misclassification caused by structural similarities in X-ray images. The study confirms the efficacy of X-ray imaging coupled with multi-classifier fusion for accurate and non-destructive internal quality evaluation of pears, offering practical value for fruit grading and post-harvest management in the pear industry. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

24 pages, 7335 KiB  
Article
Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion
by Li Guo, Qin Gao, Mengyi Zhang, Panting Cheng, Peng He, Lujun Li, Dong Ding, Changcheng Liu, Francis Collins Muga, Masroor Kamal and Jiangtao Qi
Agriculture 2025, 15(12), 1313; https://doi.org/10.3390/agriculture15121313 - 19 Jun 2025
Viewed by 394
Abstract
Soil organic matter (SOM) content is a key indicator for assessing soil health, carbon cycling, and soil degradation. Traditional SOM detection methods are complex and time-consuming and do not meet the modern agricultural demand for rapid, non-destructive analysis. While significant progress has been [...] Read more.
Soil organic matter (SOM) content is a key indicator for assessing soil health, carbon cycling, and soil degradation. Traditional SOM detection methods are complex and time-consuming and do not meet the modern agricultural demand for rapid, non-destructive analysis. While significant progress has been made in spectral inversion for SOM prediction, its accuracy still lags behind traditional chemical methods. This study proposes a novel approach to predict SOM content by integrating spectral, texture, and color features using a three-branch convolutional neural network (3B-CNN). Spectral reflectance data (400–1000 nm) were collected using a portable hyperspectral imaging device. The top 15 spectral bands with the highest correlation were selected from 260 spectral bands using the Correlation Coefficient Method (CCM), Boruta algorithm, and Successive Projections Algorithm (SPA). Compared to other methods, CCM demonstrated superior dimensionality reduction performance, retaining bands highly correlated with SOM, which laid a solid foundation for multi-source data fusion. Additionally, six soil texture features were extracted from soil images taken with a smartphone using the gray-level co-occurrence matrix (GLCM), and twelve color features were obtained through the color histogram. These multi-source features were fused via trilinear pooling. The results showed that the 3B-CNN model, integrating multi-source data, performed exceptionally well in SOM prediction, with an R2 of 0.87 and an RMSE of 1.68, a 23% improvement in R2 compared to the 1D-CNN model using only spectral data. Incorporating multi-source data into traditional machine learning models (SVM, RF, and PLS) also improved prediction accuracy, with R2 improvements ranging from 4% to 11%. This study demonstrates the potential of multi-source data fusion in accurately predicting SOM content, enabling rapid assessment at the field scale and providing a scientific basis for precision fertilization and agricultural management. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 5038 KiB  
Article
Dynamic Analysis, FPGA Implementation and Application of Memristive Hopfield Neural Network with Synapse Crosstalk
by Minghao Shan, Yuyao Yang, Qianyi Tang, Xintong Hu and Fuhong Min
Electronics 2025, 14(12), 2464; https://doi.org/10.3390/electronics14122464 - 17 Jun 2025
Viewed by 255
Abstract
In a biological nervous system, neurons are connected to each other via synapses to transmit information. Synaptic crosstalk is the phenomenon of mutual interference or interaction of neighboring synapses between neurons. This phenomenon is prevalent in biological neural networks and has an important [...] Read more.
In a biological nervous system, neurons are connected to each other via synapses to transmit information. Synaptic crosstalk is the phenomenon of mutual interference or interaction of neighboring synapses between neurons. This phenomenon is prevalent in biological neural networks and has an important impact on the function and information processing of the neural system. In order to simulate and study this phenomenon, this paper proposes a memristor model based on hyperbolic tangent function for simulating the activation function of neurons, and constructs a three-neuron HNN model by coupling two memristors, which brings it close to the real behavior of biological neural networks, and provides a new tool for studying complex neural dynamics. The intricate nonlinear dynamics of the MHNN are examined using techniques like Lyapunov exponent analysis and bifurcation diagrams. The viability of the MHNN is confirmed through both analog circuit simulation and FPGA implementation. Moreover, an image encryption approach based on the chaotic system and a dynamic key generation mechanism are presented, highlighting the potential of the MHNN for real-world applications. The histogram shows that the encryption algorithm is effective in destroying the features of the original image. According to the sensitivity analysis, the bit change rate of the key is close to 50% when small perturbations are applied to each of the three parameters of the system, indicating that the system is highly resistant to differential attacks. The findings indicate that the MHNN displays a wide range of dynamical behaviors and high sensitivity to initial conditions, making it well-suited for applications in neuromorphic computing and information security. Full article
Show Figures

Figure 1

Back to TopTop