Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Aera of Soil Samples
2.2. Acquisition Process of Soil Sample Information
2.3. Extraction of Image Information from Smartphone Images
2.4. Spectral Band Selection Algorithms
2.5. Subsection
2.5.1. Traditional Inversion Models
2.5.2. Three-Branch CNN Model (3B-CNN)
2.6. Model Evaluation Metrics
3. Results
3.1. Statistical Analysis of Soil Sample Information
3.2. Prediction Model of SOM Content Based on Spectral Data
3.3. The SOM Content Prediction Model Based on Multi-Source Data
3.4. Comparison of the Results Between Spectral Input and Multi-Source Data Input
4. Discussion
4.1. Impact of Multi-Source Data Fusion on Soil Organic Matter Prediction
4.2. Effectiveness of Spectral Band Selection Methods
5. Conclusions
- Compared with SPA and Boruta methods, the CCM performed best in selecting sensitive bands highly correlated with SOM. It effectively removed redundant information while retaining key features, achieving a maximum prediction accuracy of R2 = 0.68 in the random forest model.
- Compared with single-source inputs, multi-source data fusion significantly improved the prediction accuracy of traditional machine learning models such as SVM and RF. For instance, after incorporating multi-source data, the R2 values of the CCM-SVM and CCM-RF models increased to 0.74 and 0.79, respectively.
- By combining spectral, texture, and color features, the 3B-CNN model achieved a prediction accuracy of R2 = 0.87 and RMSE = 1.68 on the validation set, significantly outperforming traditional models such as SVM, RF, and PLS. This high accuracy enables rapid, non-destructive SOM monitoring for precision agriculture and land management.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.B.; Zhang, X.Y.; Wang, Y.X.; Sui, Y.Y.; Zhang, S.L.; Herbert, S.J.; Ding, G. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56, 87–97. [Google Scholar] [CrossRef]
- Wang, D.D.; Chakraborty, S.; Weindorf, D.C.; Li, B.; Sharma, A.; Paul, S.; Ali, M.N. Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen. Geoderma 2015, 243, 157–167. [Google Scholar] [CrossRef]
- Luo, Z.K.; Wang, E.L.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2010, 155, 211–223. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Shi, T.; Chen, Y.; Jiang, Q.; Linderman, M. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma 2019, 337, 32–41. [Google Scholar] [CrossRef]
- Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar]
- Wielopolski, L.; Chatterjee, A.; Mitra, S.; Lal, R. In situ determination of Soil carbon pool by inelastic neutron scattering: Comparison with dry combustion. Geoderma 2011, 160, 394–399. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Souza, A.M.; Coelho, M.R.; Winkler, T.C.B.; Souza, W.E.; Valderrama, P. Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration. J. Braz. Chem. Soc. 2016, 27, 1527–1532. [Google Scholar] [CrossRef]
- Senesi, G.S.; Senesi, N. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Anal. Chim. Acta 2016, 938, 7–17. [Google Scholar] [CrossRef]
- Shi, Z.; Ji, W.; Viscarra Rossel, R.A.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [Google Scholar] [CrossRef]
- Meng, X.T.; Bao, Y.L.; Wang, Y.; Zhang, X.L.; Liu, H.J. An advanced soil organic carbon content prediction model via fused temporal-spatial-spectral (TSS) information based on machine learning and deep learning algorithms. Remote. Sens. Environ. 2022, 280, 113166. [Google Scholar] [CrossRef]
- Song, H.F.; Yang, W.W.; Dai, S.S.; Yuan, H.Y. Multi-source remote sensing image classification based on two-channel densely connected convolutional networks. Math. Biosci. Eng. 2020, 17, 7353–7377. [Google Scholar] [CrossRef] [PubMed]
- Alirezazadeh, P.; Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Landwehr, N.; Tavakoli, H. Improved digital image-based assessment of soil aggregate size by applying convolutional neural networks. Comput. Electron. Agric. 2021, 191, 106499. [Google Scholar] [CrossRef]
- Swetha, R.K.; Dasgupta, S.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Mancini, M.; Silva, S.H.G.; Ribeiro, B.T.; Curi, N.; Ray, D.P. Using Nix color sensor and Munsell soil color variables to classify contrasting soil types and predict soil organic carbon in Eastern India. Comput. Electron. Agric. 2022, 199, 107192. [Google Scholar] [CrossRef]
- Yang, J.W.; Shen, F.L.; Wang, T.W.; Luo, M.Y.; Li, N.; Que, S.X. Effect of smart phone cameras on color-based prediction of soil organic matter content. Geoderma 2021, 402, 115365. [Google Scholar] [CrossRef]
- Costa, J.J.F.; Giasson, É.; da Silva, E.B.; Coblinski, J.A.; Tiecher, T. Use of color parameters in the grouping of soil samples produces more accurate predictions of soil texture and soil organic carbon. Comput. Electron. Agric. 2020, 177, 105710. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Y.; Xia, J. A simple digital imaging method for estimating black-soil organic matter under visible spectrum. Arch. Agron. Soil Sci. 2017, 63, 1346–1354. [Google Scholar] [CrossRef]
- Wang, W.C.; Yang, W.; Zhou, P.; Cui, Y.L.; Wang, D.; Li, M.Z. Development and performance test of a vehicle-mounted total nitrogen content prediction system based on the fusion of near-infrared spectroscopy and image information. Comput. Electron. Agric. 2022, 192, 106613. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, L.C.; Li, L.L.; Tang, X.; Guo, Y.W. Deep multi-level fusion network for multi-source image pixel-wise classification. Knowl.-Based Syst. 2021, 221, 106921. [Google Scholar] [CrossRef]
- Pei, Y.F.; Zuo, Z.T.; Zhang, Q.Z.; Wang, Y.Z. Data Fusion of Fourier Transform Mid-Infrared (MIR) and Near-Infrared (NIR) Spectroscopies to Identify Geographical Origin of Wild Paris polyphylla var. yunnanensis. Molecules 2019, 24, 2559. [Google Scholar] [CrossRef]
- Cao, Q.; Zhong, Y.F.; Ma, A.L.; Zhang, L.P. Urban Land Use/Land Cover Classification Based on Feature Fusion Fusing Hyperspect Image And Lidar Data. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Zhu, Y.X.; Li, W.; Zhang, M.M.; Pang, Y.; Tao, R.; Du, Q. Joint feature extraction for multi-source data using similar double-concentrated network. Neurocomputing 2021, 450, 70–79. [Google Scholar] [CrossRef]
- Li, K.; Zhang, W.; Yu, D.; Tian, X. HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion. ISPRS J. Photogramm. Remote. Sens. 2022, 188, 30–44. [Google Scholar] [CrossRef]
- Vivone, G. Multispectral and hyperspectral image fusion in remote sensing: A survey. Inf. Fusion 2023, 89, 405–417. [Google Scholar] [CrossRef]
- Du, Z.B.; Gao, B.B.; Ou, C.; Du, Z.R.; Yang, J.Y.; Bayartungalag, B.; Battogtokh, D.; Wenju, Y.; Zhu, D.H. A Quantitative Analysis of Factors Influencing Organic Matter Concentration in the Topsoil of Black Soil in Northeast China Based on Spatial Heterogeneous Patterns. ISPRS Int. J. Geo-Inf. 2021, 10, 348. [Google Scholar] [CrossRef]
- Tang, H.Z.; Zhang, Y.Y.; Liu, Q.; Guo, M.Y.; Niu, J.C.; Xia, Q.Y.; Liang, M.Y.; Liu, Y.J.; Huang, Y.F.; Du, Y.M. Comprehensive evaluation of cultivated land quality in black soil of Northeast China: Emphasizing functional diversity and risk management. Appl. Sci. 2025, 15, 3753. [Google Scholar] [CrossRef]
- Heilongjiang Provincial Department of Ecology and Environment. Environmental Status Bulletin; Heilongjiang Provincial Department of Ecology and Environment: Dandong, China, 2024. [Google Scholar]
- China Meteorological Administration. National Surface Climate Data Yearbook; China Meteorological Administration: Beijing, China, 2024. [Google Scholar]
- Zhang, C.; Li, G.; Du, S. Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Song, W.W.; Li, S.T.; Fang, L.Y.; Lu, T. Hyperspectral Image Classification With Deep Feature Fusion Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.K.; Yue, J.B.; Jin, X.L.; Li, Z.H.; Yang, G.J. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Front. Plant Sci. 2022, 13, 938216. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, K.F.; Sun, Y.Q.; Zhao, Y.D.; Zhuang, H.F.; Ban, W.; Chen, Y.; Fu, E.J.; Chen, S.; Liu, J.X.; et al. Combining Spectral and Texture Features of UAS-Based Multispectral Images for Maize Leaf Area Index Estimation. Remote. Sens. 2022, 14, 331. [Google Scholar]
- Park, Y.; Guldmann, J.-M. Measuring continuous landscape patterns with Gray-Level Co-Occurrence Matrix (GLCM) indices: An alternative to patch metrics? Ecol. Indic. 2020, 109, 105802. [Google Scholar] [CrossRef]
- Zhou, W.; Xiao, J.Y.; Li, H.R.; Chen, Q.; Wang, T.; Wang, Q.; Yue, T.X. Soil organic matter content prediction using Vis-NIRS based on different wavelength optimization algorithms and inversion models. J. Soils Sediments 2023, 23, 2506–2517. [Google Scholar] [CrossRef]
- Wang, R.; Tuerxun, N.; Zheng, J. Improved estimation of SPAD values in walnut leaves by combining spectral, texture, and structural information from UAV-based multispectral image. Sci. Hortic. 2024, 328, 112940. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Huang, R.B.; Hanif, M.F.; Siddiqui, M.K.; Hanif, M.F.; Petros, F.B. Analyzing boron oxide networks through Shannon entropy and Pearson correlation coefficient. Sci. Rep. 2024, 14, 26552. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Jones, B.K.; Hastie, T. Partial least squares prediction in high-dimensional regression. Ann. Statist. 2019, 47, 871–904. [Google Scholar]
- Rokach, L. Decision forest: Twenty years of research. Inf. Fusion 2016, 27, 111–125. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.G.; Ren, S.Q.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015. [Google Scholar]
- Gmur, S.; Vogt, D.; Zabowski, D.; Moskal, L.M. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees. Sensors 2012, 12, 10639–10658. [Google Scholar] [CrossRef]
- Hong, Y.S.; Chen, S.C.; Zhang, Y.; Chen, Y.Y.; Yu, L.; Liu, Y.F.; Liu, Y.L.; Cheng, H.; Liu, Y. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Sci. Total Environ. 2018, 644, 1232–1243. [Google Scholar] [CrossRef]
- Xu, S.X.; Zhao, Y.C.; Wang, M.Y.; Shi, X.Z. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Guedes, W.N.; Babos, D.V.; Costa, V.C.; Morais, C.P.; Freitas, V.S.; Stenio, K.; Xavier, A.A.P.; Borduchi, L.C.L.; Villas-Boas, P.R.; Milori, D.M.B.P. Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: Tutorial. J. Opt. Soc. Am. B 2023, 40, 1319–1330. [Google Scholar] [CrossRef]
- Rosero-Vlasova, O.A.; Vlassova, L.; Pérez-Cabello, F.; Montorio, R.; Nadal-Romero, E. Soil organic matter and texture estimation from visible-near infrared-shortwave infrared spectra in areas of land cover changes using correlated component regression. Land Degrad. Dev. 2019, 30, 544–560. [Google Scholar] [CrossRef]
- Yang, J.X.; Li, X.G.; Ma, X.F.; Ge, X.Y. Potential of Hyperspectral Data Combined with Optimal Band Combination Algorithm for Estimating Soil Organic Carbon Content in Lakeside Oasis. Land Degrad. Dev. 2024, 35, 5874–5885. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
Texture Feature | Formula | Explanation of Variables | Meanings |
---|---|---|---|
Contrast | : gray-level indices; : probability value at position in the GLCM | Measures gray-level differences, indicating texture roughness. | |
Energy | : probability value at position in the GLCM | Measures texture regularity, higher values indicate smoother texture. | |
Entropy | : probability value at position in the GLCM | Measures image complexity and uncertainty. | |
Homogeneity | : probability value at position in the GLCM; : gray-level indices | Measures pixel similarity, higher values indicate uniformity. | |
Correlation | : means of rows and columns; : standard deviations; : joint probability in the GLCM | Measures linear relationship between pixels, higher values indicate stronger correlation. | |
Angular Second Moment | : probability value at position in the GLCM | Measures uniformity of texture, with higher values indicating more consistent patterns. |
Color Feature | Formula | Explanation of Variables | Meanings |
---|---|---|---|
Mean | : intensity of color channel at pixel ; : total number of pixels | The average value of the color channel, representing the overall color bias. | |
Standard Deviation | : mean intensity; : standard deviation; , : as above | The degree of dispersion in the color distribution; the larger the deviation, the greater the variation. | |
Skewness | : standard deviation; : mean; : color intensity | The asymmetry of the color distribution, describing its skewness. | |
Kurtosis | : std dev; : mean intensity; : intensity; : pixel count | The sharpness of the color distribution, indicating how concentrated or flat the distribution is. |
Model | Validation Set | Test Set | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | RPD | RPIQ | R2 | RMSE | RPD | RPIQ | |
Boruta-SVM | 0.70 | 3.02 | 3.27% | 0.64 | 0.60 | 3.37 | 3.76% | 0.69 |
SPA-SVM | 0.67 | 3.20 | 3.72% | 0.64 | 0.63 | 3.24 | 3.94% | 0.73 |
CCM-SVM | 0.67 | 3.18 | 3.66% | 0.64 | 0.63 | 3.23 | 3.94% | 0.71 |
Boruta-PLS | 0.69 | 3.07 | 4.28% | 0.62 | 0.59 | 3.42 | 4.44% | 0.69 |
SPA-PLS | 0.69 | 3.07 | 4.27% | 0.60 | 0.60 | 3.38 | 4.80% | 0.66 |
CCM-PLS | 0.70 | 3.05 | 4.18% | 0.59 | 0.62 | 3.27 | 4.50% | 0.67 |
Boruta-RF | 0.74 | 2.71 | 3.67% | 0.72 | 0.64 | 3.63 | 4.91% | 0.70 |
SPA-RF | 0.70 | 2.91 | 3.90% | 0.71 | 0.67 | 3.47 | 4.84% | 0.69 |
CCM-RF | 0.70 | 2.89 | 3.85% | 0.72 | 0.68 | 3.44 | 4.77% | 0.69 |
Boruta-1D CNN | 0.63 | 3.22 | 10.13% | 0.59 | 0.61 | 3.59 | 10.69% | 0.55 |
SPA-1D CNN | 0.65 | 3.14 | 10.13% | 0.58 | 0.62 | 3.54 | 10.73% | 0.52 |
CCM-1D CNN | 0.65 | 3.13 | 10.13% | 0.59 | 0.64 | 3.43 | 10.56% | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Gao, Q.; Zhang, M.; Cheng, P.; He, P.; Li, L.; Ding, D.; Liu, C.; Muga, F.C.; Kamal, M.; et al. Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion. Agriculture 2025, 15, 1313. https://doi.org/10.3390/agriculture15121313
Guo L, Gao Q, Zhang M, Cheng P, He P, Li L, Ding D, Liu C, Muga FC, Kamal M, et al. Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion. Agriculture. 2025; 15(12):1313. https://doi.org/10.3390/agriculture15121313
Chicago/Turabian StyleGuo, Li, Qin Gao, Mengyi Zhang, Panting Cheng, Peng He, Lujun Li, Dong Ding, Changcheng Liu, Francis Collins Muga, Masroor Kamal, and et al. 2025. "Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion" Agriculture 15, no. 12: 1313. https://doi.org/10.3390/agriculture15121313
APA StyleGuo, L., Gao, Q., Zhang, M., Cheng, P., He, P., Li, L., Ding, D., Liu, C., Muga, F. C., Kamal, M., & Qi, J. (2025). Soil Organic Matter Content Prediction Using Multi-Input Convolutional Neural Network Based on Multi-Source Information Fusion. Agriculture, 15(12), 1313. https://doi.org/10.3390/agriculture15121313