Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = hinge joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7687 KiB  
Article
A Piezoelectric-Actuated Variable Stiffness Miniature Rotary Joint
by Yifan Lu, Yifei Yang, Xiangyu Ma, Ce Chen, Tong Qin, Honghao Yue and Siqi Ma
Materials 2025, 18(14), 3289; https://doi.org/10.3390/ma18143289 - 11 Jul 2025
Viewed by 425
Abstract
With the acceleration of industrialization, deformable mechanisms that can adapt to complex environments have gained widespread applications. Joints serve as carriers for transmitting forces and motions between components, and their stiffness significantly influences the static and dynamic characteristics of deformable mechanisms. A variable [...] Read more.
With the acceleration of industrialization, deformable mechanisms that can adapt to complex environments have gained widespread applications. Joints serve as carriers for transmitting forces and motions between components, and their stiffness significantly influences the static and dynamic characteristics of deformable mechanisms. A variable stiffness joint is crucial for ensuring the safety and reliability of the system, as well as for enhancing environmental adaptability. However, existing variable stiffness joints fail to meet the requirements for miniaturization, lightweight construction, and fast response. This paper proposes a piezoelectric-actuated variable stiffness miniature rotary joint featuring a compact structure, monitorable loading state, and rapid response. Given that the piezoelectric stack expands and contracts when energized, this paper proposes a transmission principle for stiffness adjustment by varying the pressure and friction between active and passive components. This joint utilizes a flexible hinge mechanism for displacement amplification and incorporates a torque sensor based on strain monitoring. A static model is developed based on piezoelectric equations and displacement amplification characteristics, and simulations confirm the feasibility of the stiffness adjustment scheme. The mechanical characteristics of various flexible hinge structures are analyzed, and the effects of piezoelectric actuation capability and external load on stiffness adjustment are examined. The experimental results demonstrate that the joint can adjust stiffness, and the sensor is calibrated using the least squares algorithm to monitor the stress state of the joint in real time. Full article
(This article belongs to the Special Issue Advanced Design and Synthesis in Piezoelectric Smart Materials)
Show Figures

Figure 1

22 pages, 56730 KiB  
Article
Evolution Process of Toppling Deformations in Interbedded Anti-Inclined Rock Slopes
by Yibing Ning, Yanjun Shen, Tao Ding, Panpan Xu, Fenghao Duan, Bei Zhang, Bocheng Zhang and John Victor Smith
Appl. Sci. 2025, 15(14), 7727; https://doi.org/10.3390/app15147727 - 10 Jul 2025
Viewed by 217
Abstract
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) [...] Read more.
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) methods were used to capture the variation in slope velocity and displacement fields. The results show that the slope deformation is conducted by bending of soft rock layers and accumulated overturning of hard blocks along numerous cross joints. As the faces of the rock columns come back into contact, the motion of the slope can progressively stabilize. Destruction of the toe blocks triggers the formation of the landslides within the toppling zone. The toppling fracture zones form by tracing tensile fractures within soft rocks and cross joints within hard rocks, ultimately transforming into a failure surface which is located above the hinge surface of the toppling motion. The evolution of the slope deformation mainly undergoes four stages: the initial shearing, the free rotation, the creep, and the progressive failure stages. Full article
Show Figures

Figure 1

29 pages, 8611 KiB  
Article
Study of Corrosion Resistance of Hybrid Structure of DP980 Two-Phase Steel and Laser-Welded 6013-T4 Aluminum Alloy
by Antonio Faria Neto, Erica Ximenes Dias, Francisco Henrique Cappi Freitas, Cristina Sayuri Fukugauchi, Erick Siqueira Guidi, Marcelo Sampaio Martins, Antonio Jorge Abdalla and Marcelo dos Santos Pereira
J. Manuf. Mater. Process. 2025, 9(7), 237; https://doi.org/10.3390/jmmp9070237 - 9 Jul 2025
Viewed by 432
Abstract
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy [...] Read more.
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy and DP980 steel were evaluated for their morphology, microhardness, and corrosion resistance. Corrosion resistance was assessed using the electrochemical noise technique over time in 0.1 M Na2SO4 and 3.5% NaCl solutions. The wavelet function was applied to remove the DC trend, and energy diagrams were generated to identify the type of corrosive process occurring on the electrodes. Corrosion on the electrodes was also monitored using photomicrographic images. Analysis revealed an aluminum–steel mixture in the melting zone, along with the presence of AlFe, AlFe3, and AlI3Fe4 intermetallic compounds. The highest Vickers microhardness was observed in the heat-affected zone, adjacent to the melt zone, where a martensitic microstructure was identified. The 6013-T4 aluminum alloy demonstrated the highest corrosion resistance in both media. Conversely, the electrochemical noise resistance was similar for the DP980 steel and the weld bead, indicating that the laser welding process does not significantly impact this property. The energy diagrams showed that localized pitting corrosion was the predominant form of corrosion. However, generalized and mixed corrosion were also observed, which corroborated the macroscopic analysis of the electrodes. Full article
Show Figures

Figure 1

21 pages, 5396 KiB  
Article
A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model
by Natalia Pingaro, Martina Buzzetti and Alessandro Gandolfi
Buildings 2025, 15(13), 2226; https://doi.org/10.3390/buildings15132226 - 25 Jun 2025
Viewed by 409
Abstract
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints [...] Read more.
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints are modeled with a combination of elastic orthotropic plate elements or shear panels and elastic perfectly brittle trusses (cutoff bars). This method employs the simplest inelastic finite element available in any commercial software to lump nonlinearities exclusively within the mortar joints. It effectively captures the failure of curved structures under Mode 1 deformation, reproducing the typical collapse mechanism of unreinforced arches and vaults via flexural plastic hinges. The proposed method is benchmarked through three case studies drawn from the literature, each supported by experimental data and numerical results of varying complexity. A comprehensive evaluation of the global force–displacement curves, along with the analysis of the thrust line and the evolution of nonlinearities within the model, demonstrates the effectiveness, reliability, and simplicity of the approach proposed. By bridging the gap between advanced simulation and practical application, the approach provides a robust tool suitable for a wide range of users. This study contributes to a deeper understanding of the behavior of unreinforced curved masonry structures and lays a base for future advancements in the analysis and conservation of historical heritage. Full article
(This article belongs to the Collection Innovation in Structural Analysis and Dynamics for Constructions)
Show Figures

Figure 1

35 pages, 4434 KiB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 494
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

24 pages, 15831 KiB  
Article
Experimental Investigation on Static Performance of Novel Precast Concrete Composite Slab–Composite Shear Wall Connections
by Xiaozhen Shang, Ming Zheng, Yutao Guo, Liangdong Zhuang and Huqing Liang
Buildings 2025, 15(11), 1935; https://doi.org/10.3390/buildings15111935 - 3 Jun 2025
Viewed by 583
Abstract
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in [...] Read more.
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in this study. In this novel connection, rectangular slots are introduced at the ends of the precast slabs, and lap-spliced reinforcement is placed within the slots to enable force transfer across the joint region. To investigate the static performance of SCS-CW connections, four groups of connection specimens were designed and fabricated. Using the structural detailing of the connection zone as the variable parameter, the mechanical performance of each specimen group was analyzed. The results show that the specimens demonstrated bending failure behavior. The key failure modes were yielding of the longitudinal reinforcement in the post-cast layer, yielding of the lap-spliced reinforcement, and concrete crushing at the precast slab ends within the plastic hinge zone. Compared to composite slab–composite wall connections with protruding rebars, the SCS-CW connections demonstrated superior ductility and a higher load-carrying capacity, satisfying the design requirements. Additionally, it was revealed that the anchorage length of lap-spliced reinforcement significantly affected the ultimate load-carrying capacity and ductility of SCS-CW connections, thus highlighting anchorage length as a critical design parameter for these connections. This study also presents methods for calculating the flexural bearing capacity and flexural stiffness of SCS-CW connections. Finally, finite element modeling was conducted on the connections to further investigate the influences of the lap-spliced reinforcement quantity, diameter, and anchorage length on the mechanical performance of the connections, and corresponding design recommendations are provided. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 4110 KiB  
Article
Kinetostatic Modeling and Performance Analysis of Redundant-Actuated 4-PSS&S Compliant Parallel 3-DOF Micro-Rotation Mechanism
by Jun Ren, Ruihan Xiao and Yahao Lu
Micromachines 2025, 16(6), 612; https://doi.org/10.3390/mi16060612 - 23 May 2025
Viewed by 400
Abstract
This paper presents a novel redundant-actuated 4-PSS&S compliant parallel micro-rotation mechanism (P represents the actuated prismatic joint and S denotes the spherical pair) with three rotational degrees of freedom. First, compliance models of the flexure spherical hinge, each branch and the whole mechanism [...] Read more.
This paper presents a novel redundant-actuated 4-PSS&S compliant parallel micro-rotation mechanism (P represents the actuated prismatic joint and S denotes the spherical pair) with three rotational degrees of freedom. First, compliance models of the flexure spherical hinge, each branch and the whole mechanism are established using the compliance matrix method. Then, the mechanism is simplified as an equivalent spring system to establish two kinetostatic models, with their correctness validated through finite element simulations. Finally, a comparative analysis is conducted on the performance of the 3-PSS&S mechanism, non-redundant-actuated 4-PSS&S mechanism and redundant-actuated 4-PSS&S mechanism. The results show the following: ① For the 4-PSS&S mechanism, redundant actuation with optimized actuating force distribution effectively reduces the peak actuating force by up to 50% (average 40.95%), achieving an average 10.79% reduction compared to the 3-PSS&S mechanism. ② The 4-PSS&S mechanism’s output stiffness increases by 26.68% in the θx and θy directions and by 33.31% in the θz direction compared to the 3-PSS&S mechanism. ③ Optimal force distribution significantly reduces the parasitic axis drift of the redundant-actuated 4-PSS&S mechanism at the constrained flexure spherical hinge S3, indicating higher motion accuracy. ④ The workspace volume of the redundant-actuated 4-PSS&S mechanism expands by 94.32% compared to the 3-PSS&S mechanism and by 372.89% compared to the non-redundant-actuated 4-PSS&S mechanism. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

36 pages, 4413 KiB  
Article
Enhancing Seismic Repairability of Precast RC Frames Through an Innovative Replaceable Plastic Hinge Technology
by Resat Oyguc and Ali Berk Bozan
Appl. Sci. 2025, 15(10), 5629; https://doi.org/10.3390/app15105629 - 18 May 2025
Viewed by 540
Abstract
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to [...] Read more.
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to a detachable steel subassembly, thereby maintaining the integrity of the primary structural components. A numerical analysis was carried out on four distinct PRC frame configurations that utilized concrete and steel of inferior quality relative to contemporary standards. The frames underwent testing under a segment of the Mw 7.7 Kahramanmaraş ground motion, revealing that connections utilizing the ACPH not only reduce peak base shear but also mitigate cracking at beam–column interfaces, directing plastic strains towards replaceable fuse elements. The implementation of the ACPH also facilitates extended structural periods and localized plastic hinging, which serves to limit damage to essential members while expediting post-earthquake repairs. Comparative validation through prior subassembly tests confirms that this hinge exhibits a strong hysteretic response and ductile performance, surpassing traditional wet-joint connections in the context of substandard PRC frames. Overall, these results underscore the potential of standardized hinge modules in enhancing seismic resilience and supporting swift, economical rehabilitation of critical infrastructure. Thus, this proposed technology effectively tackles persistent issues related to low-strength materials in precast structures, presenting a practical approach to improving earthquake resilience and minimizing repair time and costs. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

16 pages, 8582 KiB  
Article
A Biomimetic Flapping Mechanism for Insect Robots Driven by Indirect Flight Muscles
by Yuma Shiokawa, Renke Liu and Hideyuki Sawada
Biomimetics 2025, 10(5), 300; https://doi.org/10.3390/biomimetics10050300 - 8 May 2025
Viewed by 946
Abstract
Insect flight mechanisms are highly efficient and involve complex hinge structures that facilitate amplified wing movement through thoracic deformation. However, in the field of flapping-wing robots, the replication of thoracic skeletal structures has received little attention. In this study, we propose and compare [...] Read more.
Insect flight mechanisms are highly efficient and involve complex hinge structures that facilitate amplified wing movement through thoracic deformation. However, in the field of flapping-wing robots, the replication of thoracic skeletal structures has received little attention. In this study, we propose and compare two different hinge models inspired by insect flight: an elastic hinge model (EHM) and an axle hinge model (AHM). Both models were fabricated using 3D printing technology using PLA material. The EHM incorporates flexible structures in both the hinge and lateral scutum regions, allowing for deformation-driven wing motion. In contrast, the AHM employs metal pins in the hinge region to reproduce joint-like articulation, while still permitting elastic deformation in the lateral scutum. To evaluate their performance, we employed an SMA actuator to generate flapping motion, and measured the wing displacement, flapping frequency, and exoskeletal deformation. The experimental results demonstrate that the EHM achieves wing flapping through overall structural flexibility, whereas the AHM provides more defined hinge motion while maintaining exoskeletal elasticity. These findings contribute to our understanding of the role of hinge mechanics in bioinspired flapping-wing robots. Future research will focus on optimizing these mechanisms for higher frequency operation, weight reduction, and better energy efficiency. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

20 pages, 3645 KiB  
Article
Experimental Research and Numerical Simulation on the Hysteresis Performance of Strengthened Beam–Column Joints
by Xiuying Yang, Yanling Li, Shixin Duan, Guodong Zhao, Jie Song and Denghu Jing
Buildings 2025, 15(9), 1421; https://doi.org/10.3390/buildings15091421 - 23 Apr 2025
Viewed by 335
Abstract
Beam–column joints in reinforced concrete frames are subjected to complex forces and are prone to damage under seismic actions. This paper proposes a method to strengthen beam–column joints using angle steel and split bolts. The hysteretic performance of the strengthened components is investigated [...] Read more.
Beam–column joints in reinforced concrete frames are subjected to complex forces and are prone to damage under seismic actions. This paper proposes a method to strengthen beam–column joints using angle steel and split bolts. The hysteretic performance of the strengthened components is investigated through test and finite element numerical simulation. The influencing parameters, including concrete strength grade, axial compression ratio, stirrup characteristic value, angle steel leg length, and angle steel leg thickness, are analyzed. The results show that angle steel can simultaneously enhance the strength and stiffness of the strengthened joints. With an increase in concrete strength grade, the load-carrying capacity of the strengthened components continuously increases. However, when the axial compression ratio exceeds 0.6, the load-carrying capacity of the strengthened components significantly decreases. The size of the stirrup characteristic value has little influence on the shear resistance of the strengthened joints. The leg length and leg thickness of the angle steel have certain effects on the strengthening effectiveness. The method of outward movement of plastic hinges can effectively improve the seismic performance of bi-directionally loaded spatial joints. Full article
(This article belongs to the Special Issue Advanced Studies on Steel Structures)
Show Figures

Figure 1

21 pages, 6826 KiB  
Article
A Mixed FEM for Studying Jointed Concrete Pavement Blowups
by Daniele Baraldi
Infrastructures 2025, 10(4), 86; https://doi.org/10.3390/infrastructures10040086 - 4 Apr 2025
Viewed by 438
Abstract
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended [...] Read more.
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended for performing a preliminary study of jointed concrete pavements. An elastic Euler–Bernoulli beam in frictionless and bilateral contact with an elastic support is considered. Three different elastic support models are assumed, namely a Winkler support, an elastic half-space (3D), and half-plane (2D). The transversal pavement joint or crack is modeled employing a hinge at the beam midpoint with nil rotational stiffness. Numerical tests are performed by determining critical loads and the corresponding modal shapes, with particular attention to the first minimum critical load related to pavement blowup. From a theoretical point of view, the results show that minimum critical loads converge to existing results in the case of Winkler support, whereas new results are obtained in the case of the 2D and 3D support types. Associated modal shapes have maximum upward displacements at the beam midpoint. The second and subsequent critical loads, together with the corresponding sinusoidal modal shapes, converge to existing results. From a practical point of view, minimum critical loads represent a lower bound for estimating axial forces due to thermal variation causing jointed pavement blowup. Full article
Show Figures

Figure 1

19 pages, 4835 KiB  
Article
Study on the Fire Resistance of Castellated Composite Beams with Semi-Rigid Restraints
by Zongxuan Zhang, Junli Lyu, Guixin Shi, Wenhao Li and Chen Wang
Buildings 2025, 15(7), 1016; https://doi.org/10.3390/buildings15071016 - 21 Mar 2025
Cited by 1 | Viewed by 399
Abstract
To study the fire resistance of castellated composite beams with semi-rigid restraints, temperature rise tests with constant loads were performed on two full-scale castellated composite beams with circular holes and semi-rigid restraints to compare the influence of whether stiffeners were set or not [...] Read more.
To study the fire resistance of castellated composite beams with semi-rigid restraints, temperature rise tests with constant loads were performed on two full-scale castellated composite beams with circular holes and semi-rigid restraints to compare the influence of whether stiffeners were set or not under semi-rigid restraints on the fire resistance of castellated composite beams. The results indicate that during the fire, the primary failure mode of castellated composite beams with semi-rigid restraints is the buckling failure of the web and lower flange in the negative moment zone at the beam end. Composite beams with stiffeners exhibited less buckling of the web and lower flange than those without stiffeners; for steel beams without stiffeners, the web and lower flange show overall lateral instability. Following the fire, the composite beams initially exhibit downward vertical deformation. After 5–10 min, when the web temperature is around 500 °C, it matures upward to the initial position. After 50 min, when the temperature of the web is around 800 °C, it starts to deform downward continuously. During the cooling stage, the end plates at the lower flange of the steel beam and the steel column show a separation phenomenon. By comparing the joint deformation and the mid-span displacement, the fire resistance performance of semi-rigid restrained castellated composite beams is better than that of hinged and rigid restraints. Numerical simulation analyses were carried out on the castellated composite beams. The simulation results showed a high degree of consistency with the test results, which effectively validated the accuracy and reliability of the proposed finite-element model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5141 KiB  
Article
Speed and Energy Efficiency of a Fish Robot Featuring Exponential Patterns of Control
by Ivan Tanev
Actuators 2025, 14(3), 119; https://doi.org/10.3390/act14030119 - 28 Feb 2025
Cited by 1 | Viewed by 645
Abstract
Fish in nature have evolved more efficient swimming capabilities compared to that of propeller-driven autonomous underwater vehicles. Motivated by such knowledge, we discuss a bionic (bio-memetic) autonomous underwater vehicle—a fish robot—that mimics the swimming of rainbow trout (Oncorhynchus mykiss) in nature. [...] Read more.
Fish in nature have evolved more efficient swimming capabilities compared to that of propeller-driven autonomous underwater vehicles. Motivated by such knowledge, we discuss a bionic (bio-memetic) autonomous underwater vehicle—a fish robot—that mimics the swimming of rainbow trout (Oncorhynchus mykiss) in nature. The robot consists of three (anterior, posterior, and tail) segments, connected via two (anterior and posterior) actuated hinge joints. We divided the half-period of undulation of the robot into two phases—thrusting and braking. In addition, we hypothesized that an asymmetric duration—a short period of thrusting and a long period of braking—implemented as an exponential (rather than “canonical”, sinusoidal) control would favorably affect the net propulsion of these two phases. The experimental results verified that, compared to sinusoidal undulation, the proposed exponential control results in increased speed of the robot between 1.1 to 4 times in the range of frequencies of undulation between 0.4 Hz and 2 Hz, and improved energy efficiency from 1.1 to 3.6 times in the same frequency range. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

24 pages, 12118 KiB  
Article
Seismic Behavior of Composite Beam to Concrete-Filled Cold-Formed High-Strength Square Steel Tubular Column Joints with Different Connection Forms
by Jiangran Guo, Longhui Sun, He Zhao and Xihan Hu
Buildings 2025, 15(4), 622; https://doi.org/10.3390/buildings15040622 - 17 Feb 2025
Cited by 2 | Viewed by 1011
Abstract
To enhance the standardization and construction efficiency of prefabricated steel structures and to promote the application of cold-formed steel tubes with the advantages of high standardization, superior mechanical properties, and fast processing speeds, two types of composite beam to concrete-filled cold-formed high-strength square [...] Read more.
To enhance the standardization and construction efficiency of prefabricated steel structures and to promote the application of cold-formed steel tubes with the advantages of high standardization, superior mechanical properties, and fast processing speeds, two types of composite beam to concrete-filled cold-formed high-strength square steel tubular column joints with different connection forms were designed in this study: the external diaphragm joint (ED joint) and the through diaphragm joint (TD joint). These joints were subjected to cyclic loading tests to evaluate the influence of the connection designs on key seismic performance parameters, such as failure modes, load-bearing capacities, the degradation of strength and stiffness, ductility, and energy dissipation capabilities. The results show that both the ED and TD joints experienced butt weld fractures at the bolted-welded connections on the beam, effectively transferring the plastic hinges from the joint zone to the beam and demonstrating good seismic performance. The ED joint specimen JD1 and the TD joint specimen JD2 exhibited similar load-bearing capacity, stiffness, strength degradation, and energy dissipation capacity. However, the TD joint showed lower ductility compared to the ED joint due to premature weld fractures. A nonlinear finite element model (FEM) was developed using MSC.MARC 2012, and the numerical simulation showed that the FEM could effectively simulate the hysteresis performance of the composite beam to concrete-filled, cold-formed, high-strength, square, steel tubular column joints with external and through diaphragms. Full article
(This article belongs to the Special Issue Advances in Structural Techniques for Prefabricated Modular Buildings)
Show Figures

Figure 1

20 pages, 7714 KiB  
Article
Effects of Cover-Plate Geometry on the Mechanical Behavior of Steel Frame Joints with Middle-Flange and Wide-Flange H-Beams
by Osama Zaid Yahya Al-Ansi, Linfeng Lu, Saleem Mohammed Ali Ahmed AL-Saeedi and Bingyou Liu
Buildings 2025, 15(2), 203; https://doi.org/10.3390/buildings15020203 - 11 Jan 2025
Viewed by 1015
Abstract
This study investigates the mechanical behavior of cover-plate reinforced connections in steel frames with I-section columns and middle- or wide-flange H-beams, addressing gaps in current design standards. Finite element analyses validated by experimental data were employed to explore the effects of cover-plate geometry—shape, [...] Read more.
This study investigates the mechanical behavior of cover-plate reinforced connections in steel frames with I-section columns and middle- or wide-flange H-beams, addressing gaps in current design standards. Finite element analyses validated by experimental data were employed to explore the effects of cover-plate geometry—shape, length, and thickness—on seismic performance. Results demonstrate that cover plates improve load-bearing capacity and ductility by relocating plastic hinges outward from joint regions. Specifically, cover-plate connections increased ductility by 25%, yield moment by 15%, and initial rotational stiffness by 7% compared to non-reinforced connections. The shape of the top cover plate had minimal impact on mechanical behavior. The cover-plate length and thickness significantly influenced seismic ductility and load-bearing capacity. The cover-plate thickness should be at least 0.3 times the beam flange thickness (not less than 6 mm) while ensuring the combined thickness of the cover plate and beam flange does not exceed the column flange thickness. These recommendations address the conservatism of existing standards, balancing material efficiency and seismic performance. Optimal cover-plate lengths of 0.7 to 0.9 times the beam depth were also identified. These findings provide practical guidelines for designing resilient steel frame connections in seismic regions. Full article
(This article belongs to the Special Issue Advanced Studies on Steel Structures)
Show Figures

Figure 1

Back to TopTop