Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = high-voltage room

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2384 KiB  
Article
Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
by Xiaoming Liu, Kun Gao, Long Huang, Peng Chen and Jing Yang
Processes 2025, 13(8), 2462; https://doi.org/10.3390/pr13082462 - 4 Aug 2025
Viewed by 11
Abstract
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature [...] Read more.
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature restricts engineering applications. This contradiction is essentially closely related to the deformation mechanism at the nanoscale. Here, we performed molecular dynamics simulations to reveal anomalous grain size effects and deformation mechanisms in nanocrystalline FeAl intermetallic material. Models with grain sizes ranging from 6.2 to 17.4 nm were systematically investigated under uniaxial tensile stress. The study uncovers a distinctive inverse Hall-Petch relationship governing flow stress within the nanoscale regime. This behavior stems from high-density grain boundaries promoting dislocation annihilation over pile-up. Crucially, the material exhibits anomalous ductility at ultra-high strain rates due to stress-induced phase transformation dominating the plastic deformation. The nascent FCC phase accommodates strain through enhanced slip systems and inherent low stacking fault energy with the increasing phase fraction paralleling the stress plateau. Nanoconfinement suppresses the propagation of macroscopic defects while simultaneously suppressing room-temperature brittle fracture and inhibiting the rapid phase transformation pathways at extreme strain rates. These findings provide new theoretical foundations for designing high-strength and high-toughness intermetallic nanocompounds. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 5713 KiB  
Article
Enhancing Ion Transport in Polymer Electrolytes by Regulating Solvation Structure via Hydrogen Bond Networks
by Yuqing Gao, Yankui Mo, Shengguang Qi, Mianrui Li, Tongmei Ma and Li Du
Molecules 2025, 30(11), 2474; https://doi.org/10.3390/molecules30112474 - 5 Jun 2025
Viewed by 664
Abstract
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. [...] Read more.
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. Herein, we demonstrate a molecular design strategy to overcome these limitations by regulating the Li+ solvation structure through the synergistic interplay of conventional Lewis acid–base coordination and engineered hydrogen bond (H–bond) networks, achieved by incorporating specific H–bond donor functionalities (N,N′–methylenebis(acrylamide), MBA) into the polymer architecture. Computational modeling confirms that the introduced H–bonds effectively modulate the Li+ coordination environment, promote salt dissociation, and create favorable pathways for faster ion transport decoupled from polymer chain motion. Experimentally, the resultant polymer electrolyte (MFE, based on MBA) enables exceptionally stable Li metal cycling in symmetric cells (>4000 h at 0.1 mA cm−2), endows LFP|MFE|Li cells with long–term stability, achieving 81.0% capacity retention after 1400 cycles, and confers NCM622|MFE|Li cells with cycling endurance, maintaining 81.0% capacity retention after 800 cycles under a high voltage of 4.3 V at room temperature. This study underscores a potent molecular engineering strategy, leveraging synergistic hydrogen bonding and Lewis acid–base interactions to rationally tailor the Li+ solvation structure and unlock efficient ion transport in polymer electrolytes, paving a promising path towards high–performance solid–state lithium metal batteries. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Molecules)
Show Figures

Graphical abstract

15 pages, 5863 KiB  
Article
Microsystem for Improving Energy Efficiency by Minimizing Room-Level Greenhouse Effects in Homes
by Shuza Binzaid and Abhitej Divi
Micro 2025, 5(2), 28; https://doi.org/10.3390/micro5020028 - 3 Jun 2025
Viewed by 3046
Abstract
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases [...] Read more.
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases of 4–10 °C and elevates energy demands by 15–30% in high solar exposure zones, the effect being even worse in tropical zones. To address this problem, an innovative analog microarchitecture is proposed for real-time RGHE detection by sensing the sunlight intensity radiation factor (SIR). A compact analog system is introduced, comprising three stages: a Sensing Circuit Stage (SCS) that isolates the dynamic sunlight signal f (r) from static room condition factors (RCFs), an Amplification Stage (AS) that shifts and boosts the signal, and a Stabilized Peak Detection Stage (SPDS) that captures the peak solar intensity. The microsystem was tested across fixed f (m) levels of 0.75 V, 1.0 V, and 1.5 V, and varying f (r) values of 3 mV, 4 mV, and 5 mV. It successfully detects peak voltages ranging from 1.69 V to 1.92 V, with stabilization achieved within 60 µs, enabling accurate detection of the f (r) signal. The proposed microarchitecture offers a scalable approach to localized thermal monitoring in smart building environments using fully analog circuitry, designed and simulated in Cadence Virtuoso using the TSMC 180 nm technology library. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

11 pages, 964 KiB  
Article
A Precision Resistance Measurement Method Based on Synchronous Sampling
by Changwei Zhai, Pengcheng Hu, Yunfeng Lu and Jianting Zhao
Electronics 2025, 14(8), 1608; https://doi.org/10.3390/electronics14081608 - 16 Apr 2025
Viewed by 413
Abstract
A precision resistance measurement method based on synchronous sampling is proposed to enable accurate resistance measurement under low-current testing conditions. This method utilizes a single current source input, connecting the standard resistor and the test resistor in series. The setup is simple, easy [...] Read more.
A precision resistance measurement method based on synchronous sampling is proposed to enable accurate resistance measurement under low-current testing conditions. This method utilizes a single current source input, connecting the standard resistor and the test resistor in series. The setup is simple, easy to operate, and allows for the convenient and rapid comparison of the voltage across the resistors. The resistance value of the test resistor is determined through calculation, achieving high measurement accuracy. An experimental comparison of two standard resistors under a low current of 1 μA demonstrated that the data dispersion reached the 10−6 level, and the measurement error was within the 10−6 range. This study also employed a resistance ratio measurement method based on room-temperature Direct Current Comparator (DCC) technology to validate the superiority of the proposed synchronous sampling approach under low-current measurement conditions. The comparative analysis demonstrated that our method exhibits significant advantages over conventional DCC techniques under a low current of 1 μA. This paper presents the first demonstration of high-accuracy resistance ratio measurement using synchronous sampling under weak current conditions. Experimental results verify that at 1 μA current level, the proposed method achieves superior measurement accuracy and lower uncertainty compared to conventional precision DC current comparator techniques under identical test conditions. Full article
Show Figures

Figure 1

12 pages, 2972 KiB  
Article
Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater
by Yutong Liu, Cong Chen, Xing Xue, Kun Tang, Xiaoyu Chen, Miao Lai, Xiaohu Li and Zhiyong Wu
Water 2025, 17(7), 1101; https://doi.org/10.3390/w17071101 - 7 Apr 2025
Viewed by 567
Abstract
The tobacco production process generates a substantial amount of wastewater characterized by high organics and low biodegradability, which poses a significant risk of severe environmental pollution. In order to explore a clean and low-cost technology for tobacco wastewater treatment, this study constructed two-chamber [...] Read more.
The tobacco production process generates a substantial amount of wastewater characterized by high organics and low biodegradability, which poses a significant risk of severe environmental pollution. In order to explore a clean and low-cost technology for tobacco wastewater treatment, this study constructed two-chamber MFCs and investigated the performance of tobacco wastewater treatment and electricity generation capacity at room temperature. The incorporation of carbon sources (e.g., glucose, acetate, propionate, and butyrate) in wastewater could enhance the removal of COD, total nitrogen and ammonia nitrogen in wastewater. After three cycles, the maximum COD removal rate reached 75.97 ± 1.49%, while the maximum total nitrogen removal and ammonia nitrogen removal rates were 46.95 ± 1.77% and 48.31 ± 1.16%, respectively. Meanwhile, the maximum voltage output of 0.67 V was observed, and the maximum power density was 717.04 mW/m2. The microbial community analysis revealed that Trichococcus and Acinetobacter were present in high abundance in MFCs, which may play a significant role in electricity generation and wastewater treatment. These results demonstrate that MFC is applicable for tobacco wastewater treatment, providing both theoretical foundation and technical references for the large-scale practical application of MFC technology in tobacco wastewater treatment. Full article
Show Figures

Figure 1

12 pages, 4609 KiB  
Article
Reduction of Interface State Density in 4H-SiC MOS Capacitors Modified by ALD-Deposited Interlayers
by Zhenyu Wang, Zhaopeng Bai, Yunduo Guo, Chengxi Ding, Qimin Huang, Lin Gu, Yi Shen, Qingchun Zhang and Hongping Ma
Nanomaterials 2025, 15(7), 555; https://doi.org/10.3390/nano15070555 - 5 Apr 2025
Viewed by 754
Abstract
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer [...] Read more.
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer was deposited via atomic layer deposition (ALD), followed by Si deposition and reoxidation to fabricate a MOS structure. The effects of different ALD growth cycles on the interface chemical composition, trap density, breakdown characteristics, and bias stress stability of the MOS capacitors were systematically investigated. X-ray photoelectron spectroscopy (XPS) analyses revealed that an ALD Al2O3 passivation layer with 10 growth cycles effectively suppresses the formation of the proportion of Si-OxCy bonds. Additionally, the SiO2/Al2O3/SiC gate stack with 10 ALD growth cycles exhibited optimal electrical properties, including a minimum interface state density (Dit) value of 3 × 1011 cm−2 eV−1 and a breakdown field (Ebd) of 10.9 MV/cm. We also systematically analyzed the bias stress stability of the capacitors at room temperature and elevated temperatures. Analysis of flat-band voltage (ΔVfb) and midgap voltage (ΔVmg) hysteresis after high-temperature positive and negative bias stress demonstrated that incorporating a thin Al2O3 layer at the interface is the key factor in enhancing the stability of Vfb and midgap voltage Vmg. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

11 pages, 2521 KiB  
Communication
Effect of Multiplication and Charge Layers on the Gain in InGaAsSb/AlGaAs Avalanche Photodiodes at Room Temperature
by Tetiana Manyk, Jarosław Rutkowski, Krzysztof Kłos, Nathan Gajowski, Sanjay Krishna and Piotr Martyniuk
Sensors 2025, 25(7), 2255; https://doi.org/10.3390/s25072255 - 3 Apr 2025
Viewed by 615
Abstract
This paper presents a theoretical analysis of npBp infrared (IR) barrier avalanche photodiode (APD) performance operating at 300 K based on a quaternary compound made of AIIIBV—InGaAsSb, lattice-matched to the GaSb substrate with a p-type barrier made of [...] Read more.
This paper presents a theoretical analysis of npBp infrared (IR) barrier avalanche photodiode (APD) performance operating at 300 K based on a quaternary compound made of AIIIBV—InGaAsSb, lattice-matched to the GaSb substrate with a p-type barrier made of a ternary compound AlGaSb. Impact ionization in the multiplication layer of InGaAsSb separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) was studied using the Crosslight Software simulation package APSYS. The band structure of the avalanche detector and the electric field distribution for the multiplication and absorption layers were determined. The influence of the multiplication and charge layer parameters on the impact multiplication gain and the excess noise factor was analyzed. It has been shown that with the decrease in the charge layer doping level, the gain and the breakdown voltage increase, but the punch-through voltage decreases, and the linear range of the APD operating voltages widens. The multiplication layer doping level slightly affects the detector parameters, while increasing its width, the photocurrent and the breakdown voltage also increase. The detector structure proposed in this work allows us to obtain a comparable gain and lower dark currents to the APD detectors made of InGaAsSb previously presented in the literature. The performed simulations confirmed the possibility of obtaining APDs with high performance at room temperatures made of InGaAsSb for the SWIR range. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

39 pages, 7353 KiB  
Review
Innovations in Air Quality Monitoring: Sensors, IoT and Future Research
by Saim Shahid, David J. Brown, Philip Wright, Ahmad M. Khasawneh, Bryn Taylor and Omprakash Kaiwartya
Sensors 2025, 25(7), 2070; https://doi.org/10.3390/s25072070 - 26 Mar 2025
Cited by 1 | Viewed by 6197
Abstract
Recently, Air Quality Monitoring (AQM) has gained significant R&D attention from academia and industries, leading to advanced sensor-enabled IoT solutions. Literature highlights the use of nanomaterials in sensor design, emphasising miniaturisation, enhanced calibration, and low voltage, room-temperature operation. Significant efforts are aimed at [...] Read more.
Recently, Air Quality Monitoring (AQM) has gained significant R&D attention from academia and industries, leading to advanced sensor-enabled IoT solutions. Literature highlights the use of nanomaterials in sensor design, emphasising miniaturisation, enhanced calibration, and low voltage, room-temperature operation. Significant efforts are aimed at improving sensitivity, selectivity, and stability, while addressing challenges like high power consumption and drift. The integration of sensors with IoT technology is driving the development of accurate, scalable, and real-time AQM systems. This paper provides technical insights into recent AQM advancements, focusing on air pollutants, sensor technologies, IoT frameworks, performance evaluation, and future research directions. It presents a detailed analysis of air quality composition and potential air pollutants. Relevant sensors are examined in terms of design, materials and methodologies for pollutant monitoring. A critical review of IoT frameworks for AQM is conducted, highlighting their strengths and weaknesses. As a technical contribution, an experimental performance evaluation of three commercially available AQM systems in the UK is discussed, with a comparative and critical analysis of the results. Lastly, future research directions are also explored with a focus on AQM sensor design and IoT framework development. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

20 pages, 4620 KiB  
Article
Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte
by Mihaela Iordache, Anișoara Oubraham, Mihaela Bazga, Gheorghe Eugen Ungureanu, Simona Elena Borta and Adriana Marinoiu
Appl. Sci. 2025, 15(7), 3469; https://doi.org/10.3390/app15073469 - 21 Mar 2025
Viewed by 980
Abstract
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area [...] Read more.
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area due to their potential for increased energy density, longer cycle life, and safety over conventional liquid electrolytic batteries. The superionic sodium conductor (NASICON) Na3Zr2Si2PO12 has gained a lot of attention among ESS because of its exceptional electrochemical properties, which make it a promising candidate for solid-state sodium-ion batteries. NASICON’s open frame structure makes it possible to transport sodium ions efficiently even at room temperature, while its wide electrochemical window enables high-voltage operation and reduces side reactions, resulting in safer battery performance. Furthermore, NASICON is more compatible with sodium ion systems, can help with electrode interface issues, and is simple to process. The characteristics of NASICON make it a highly desirable and vital material for solid-state sodium-ion batteries. The aim of this study is to prepare and characterize ceramic membranes that contain Na3.06Zr2Si2PO12 and Na3.18Zr2Si2PO12, and measure their stability in seawater batteries that serve as solid electrolytes. The surface analysis revealed that the Na3.06Zr2Si2PO12 powder has a specific surface area of 7.17 m2 g−1, which is more than the Na3.18Zr2Si2PO12 powder’s 6.61 m2 g−1. During measurement, the NASICON samples showed ionic conductivities of 8.5 × 10−5 and 6.19 × 10−4 S cm−1. Using platinum/carbon (Pt/C) as a catalyst and seawater as a source of cathodes with sodium ions (Na+), batteries were charged and discharged using different current values (50 and 100 µA) for testing. In an electrochemical cell, a battery with a NASICON membrane and Pt/C catalysts with 0.00033 g platinum content was used to assess reproducibility at a constant current of 2 h. After 100 h of operation, charging and discharging voltage efficiency was 71% (50/100 µA) and 83.5% (100 µA). The electric power level is observed to increase with the number of operating cycles. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

23 pages, 5126 KiB  
Article
Integration of Conductive SnO2 in Binary Organic Solar Cells with Fine-Tuned Nanostructured D18:L8-BO with Low Energy Loss for Efficient and Stable Structure by Optoelectronic Simulation
by Mohamed El Amine Boudia and Cunlu Zhao
Nanomaterials 2025, 15(5), 368; https://doi.org/10.3390/nano15050368 - 27 Feb 2025
Viewed by 1237
Abstract
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend [...] Read more.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons. The research incorporates SnO2 and ZnO as electron transport layers (ETLs), with PMMA functioning as a hole transport layer (HTL). A comprehensive analysis of photon absorption, charge carrier generation, localized energy fluctuations, and thermal stability reveals their critical role in enhancing the efficiency of D18:L8-BO active films. Notably, introducing SnO2 as an ETL significantly decreased losses and modified localized energy, achieving an impressive efficiency of 19.85% at an optimized blend thickness of 50 nm with low voltage loss (ΔVoc) of 0.4 V within a Jsc of 28 mA cm−2 by performing an optoelectronic simulation employing “Oghma-Nano 8.1.015” software. In addition, the SnO2-based structure conserved 88% of the PCE at 350 K compared to room temperature PCE, which describes the high thermal stability of this structure. These results demonstrate the potential of this methodology in improving the performance of OSCs. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

24 pages, 2455 KiB  
Review
A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
by Akikazu Sakudo, Koichi Furusaki, Rumiko Onishi, Takashi Onodera and Yasuhiro Yoshikawa
Microorganisms 2025, 13(3), 507; https://doi.org/10.3390/microorganisms13030507 - 25 Feb 2025
Viewed by 791
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants [...] Read more.
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material. Full article
Show Figures

Figure 1

14 pages, 8059 KiB  
Article
The Effect of Through-Silicon-Via Thermal Stress on Metal-Oxide-Semiconductor Field-Effect Transistor Properties Under Cooling to Ultra-Low Temperatures
by Wenting Xie, Xiaoting Chen, Liting Zhang, Xiangjun Lu, Bing Ding and An Xie
Micromachines 2025, 16(2), 221; https://doi.org/10.3390/mi16020221 - 15 Feb 2025
Viewed by 839
Abstract
The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases [...] Read more.
The thermal through-silicon-via (TTSV) has a serious thermal stress problem due to the mismatch of the coefficient of thermal expansion between the Si substrate and filler metal. At present, the thermal stress characteristics and strain mechanism of TTSV are mainly concerned with increases in temperature, and its temperature range is concentrated between 173 and 573 K. By employing finite element analysis and a device simulation method based on temperature-dependent material properties, the impact of TTSV thermal stress on metal-oxide-semiconductor field-effect transistor (MOSFET) properties is investigated under cooling down from room temperature to the ultra-low temperature (20 mK), where the magnitude of thermal stress in TTSV is closely associated with the TTSV diameter and results in significant tension near the Cu-Si interface and consequently increasing the likelihood of delamination and cracking. Considering the piezoresistive effect of the Si substrate, both the TTSV diameter and the distance between TTSV and MOSFET are found to have more pronounced effects on electron mobility along [100] crystal orientation and hole mobility along [110] crystal orientation. Applying a gate voltage of 3 V, the saturation current for the 45 nm-NMOS transistor oriented along channel [100] experiences a variation as high as 34.3%. Moreover, the TTSV with a diameter of 25 μm generates a change in MOSFET threshold voltage up to −56.65 mV at a distance as short as 20 μm. The influences exerted by the diameter and distance are consistent across carrier mobility, saturation current, and threshold voltage parameters. Full article
Show Figures

Figure 1

15 pages, 5437 KiB  
Article
Deposition and Characterization of Zinc–Tin Oxide Thin Films with Varying Material Compositions
by Stanka Spasova, Vladimir Dulev, Alexander Benkovsky, Vassil Palankovski, Ekaterina Radeva, Rumen Stoykov, Zoya Nenova, Hristosko Dikov, Atanas Katerski, Olga Volobujeva, Daniela Lilova and Maxim Ganchev
Coatings 2025, 15(2), 225; https://doi.org/10.3390/coatings15020225 - 13 Feb 2025
Viewed by 1174
Abstract
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show [...] Read more.
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show gradual phase transitions up to 480 °C. These data are used for an appropriate regime for thermal annealing of the layers. X-ray photoelectron spectroscopy (XPS) data show mixed oxide compound formation in states Zn2+, Sn4+ and O2− of the constituents. Optical investigation manifests high transmittance above 80% in the visible spectral range and an optical band gap of 3.3–3.7 eV. The work functions vary between 4.1 eV and 5 eV, depending on the annealing, with deviations less than 1% for surface 1 mm2 scans. Stack devices ITO/ZTO/metal with different metal contacts are formed. The I–V (current–voltage) measurements of the fabricated stacks exhibit Ohmic or nonlinear behavior, depending on the material composition and the work function levels. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

17 pages, 5815 KiB  
Article
A 250 °C Low-Power, Low-Temperature-Drift Offset Chopper-Stabilized Operational Amplifier with an SC Notch Filter for High-Temperature Applications
by Zhong Yang, Jiaqi Li, Jiangduo Fu, Jiayin Song, Qingsong Cai and Shushan Qiao
Appl. Sci. 2025, 15(2), 849; https://doi.org/10.3390/app15020849 - 16 Jan 2025
Viewed by 1130
Abstract
This paper proposes a three-stage op amp based on the SOI (silicon-on-insulator) process, which achieves a low offset voltage and temperature coefficient across a wide temperature range from −40 °C to 250 °C. It can be used in aerospace, oil and gas exploration, [...] Read more.
This paper proposes a three-stage op amp based on the SOI (silicon-on-insulator) process, which achieves a low offset voltage and temperature coefficient across a wide temperature range from −40 °C to 250 °C. It can be used in aerospace, oil and gas exploration, automotive electronics, nuclear industry, and in other fields where the ability of electronic devices to withstand high-temperature environments is strongly required. By utilizing a SC (Switched Capacitor) notch filter, the op amp achieves low input offset in a power-efficient manner. The circuit features a multi-path nested Miller compensation structure, consisting of a low-speed channel and a high-speed channel, which switch according to the input signal frequency. The input-stage operational amplifier is a fully differential, rail-to-rail design, utilizing tail current control to reduce the impact of common-mode voltage on the transconductance of the input stage. The two-stage operational amplifier uses both cascode and Miller compensation, minimizing the influence of the feedforward signal path and improving the amplifier’s response speed. The prototype op amp is fabricated in a 0.15 µm SOI process and draws 0.3 mA from a 5 V supply. The circuit occupies a chip area of 0.76 mm2. The measured open-loop gain exceeds 140 dB, with a 3 dB bandwidth greater than 100 kHz. The amplifier demonstrates stable performance across a wide temperature range from −40 °C to 250 °C, and exhibits an excellent input offset of approximately 20 µV at room temperature and an offset voltage temperature coefficient of 0.7 μV/°C in the full temperature range. Full article
(This article belongs to the Special Issue Advanced Research on Integrated Circuits and Systems)
Show Figures

Figure 1

14 pages, 5962 KiB  
Article
Studies on the High-Power Piezoelectric Property Measurement Methods and Decoupling the Power and Temperature Effects on PZT-5H
by Wenchao Xue, Xiaobo Wang, Yuliang Zhu and Chengtao Luo
Sensors 2025, 25(2), 349; https://doi.org/10.3390/s25020349 - 9 Jan 2025
Cited by 1 | Viewed by 993
Abstract
For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the [...] Read more.
For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics. The results from both methods indicated that with increasing power, the electromechanical coupling coefficient k31 , the piezoelectric constant d31, and the elastic compliance s11E of the PZT-5H showed increasing trends, while the mechanical quality factor Qm first decayed rapidly and then stabilized at a fixed level. Additionally, under the combined impedance method, the temperature of the vibrators rose significantly due to self-heating, whereas the transient method generated almost no heat, and the vibrators remained at room temperature. By comparing the results from the two methods, we decoupled the effects of temperature and power on the high-power piezoelectric performance. The results showed that the self-heating temperature amplified the effects of power on k31, d31, and s11E, while its influence on Qm remained negligible. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop