Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = high-temperature combustion products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 297
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

16 pages, 1658 KiB  
Article
Environmentally Friendly Chelation for Enhanced Algal Biomass Deashing
by Agyare Asante, George Daramola, Ryan W. Davis and Sandeep Kumar
Phycology 2025, 5(3), 32; https://doi.org/10.3390/phycology5030032 - 23 Jul 2025
Viewed by 308
Abstract
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its [...] Read more.
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its high ash removal potential. The optimized sequential treatment (DI, NTA chelation, and DI+NTA treatment at 90–130 °C) achieved up to 83.07% ash removal, reducing ash content from 15.2% to 3.8%. Elevated temperatures enhanced the removal of calcium, magnesium, and potassium, while heavy metals like lead and copper were reduced below detection limits. CHN analysis confirmed minimal loss of organic content, preserving biochemical integrity. Unlike traditional acid leaching, this method is eco-friendly after three cycles. The approach offers a scalable, sustainable solution to improve algal biomass quality for thermochemical conversion and supports circular bioeconomy goals. Full article
Show Figures

Graphical abstract

20 pages, 925 KiB  
Review
Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production
by Khalid Al Sadi, Ebrahim Nadimi and Dawei Wu
Energies 2025, 18(13), 3505; https://doi.org/10.3390/en18133505 - 2 Jul 2025
Cited by 1 | Viewed by 411
Abstract
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and [...] Read more.
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and the formation of nitrogen oxides (NOX). This review explores catalytic ammonia cracking as a viable method to enhance combustion through in situ hydrogen production. It evaluates traditional catalytic burner designs originally developed for hydrocarbon fuels and assesses their adaptability for ammonia-based applications. Special attention is given to ruthenium- and nickel-based catalysts supported on various oxides and nanostructured materials, evaluating their ammonia conversion efficiency, resistance to sintering, and thermal stability. The impact of the main operational parameters, including reaction temperature and gas hourly space velocity (GHSV), is also discussed. Strategies for combining partial ammonia cracking with stable combustion are studied, with practical issues such as catalyst degradation, NOX regulation, and system scalability. The analysis highlights recent advancements in structural catalyst support, which have potential for industrial-scale application. This review aims to provide future development of low-emission, high-efficiency catalytic burner systems and advance ammonia’s role in next-generation hydrogen energy technologies. Full article
Show Figures

Figure 1

15 pages, 4286 KiB  
Article
Numerical Modeling and Thermovision Camera Measurement of Blast Furnace Raceway Dynamics
by Sailesh Kesavan, Joakim Eck, Lars-Erik From, Maria Lundgren, Lena Sundqvist Öqvist and Martin Kjellberg
Materials 2025, 18(13), 3061; https://doi.org/10.3390/ma18133061 - 27 Jun 2025
Viewed by 350
Abstract
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. [...] Read more.
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. With global pressure to reduce CO2 emissions, optimization of BF operation is crucial, which is possible through optimizing fuel consumption, and improving process stability. Understanding the complex combustion and flow dynamics in the raceway region is essential for enhancing reducing agent utilization. Modeling plays a key role in predicting these behaviors and providing insights into the process; however, validation of these models is crucial for their reliability but difficult in the complex and hostile BF raceway region. In this study, a validated raceway model developed at Swerim was used to evaluate four different cases, namely R1 (Reference), R2 (Low oxygen to blast), R3 (High blast moisture), and R4 (High PC) using an injection coal from SSAB Oxelösund. During actual experiments, the temperature distribution in the raceway was measured using a thermovision camera (TVC) to validate the CFD simulation results. The combined use aims to cross-validate the results simultaneously to establish a reliable framework for future parametric studies of raceway behavior under varying operational conditions using CFD simulations The results indicated that it is possible to measure the temperature within the raceway region using TVC at depths indicated to be 0.5–0.7 m, when not obscured by the coal plume, or <0.5 m, when obscured. TVC measurements are clearly quantitatively affected when obscured, indicated by considerably lower temperatures in the order of 200 °C between similar process conditions. A decrease of O2 injection results in an extended raceway region as the conditions become less chemically favorable for combustion due to a lower reactant content offsetting the ignition point and reducing the reaction rate in the raceway. An increased moisture content in the blast results in a reduced size of the race-way region as energy is consumed as latent energy and cracks water. An increase in PC rate results in a larger/wider raceway region, as more PC is devolatilized and combusted early on, resulting in larger gas volumes expanding the raceway region outwards, perpendicular to the injection. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 456
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

26 pages, 4557 KiB  
Article
Quantitative Analysis of Explosion Characteristics Based on Ignition Location in an Ammonia Fuel Preparation Room Using CFD Simulation
by Jin-Woo Bae, Beom-Seok Noh, Ji-Woong Lee, Su-Jeong Choe, Kweon-Ha Park, Jeong-Do Kim and Jae-Hyuk Choi
Appl. Sci. 2025, 15(12), 6554; https://doi.org/10.3390/app15126554 - 11 Jun 2025
Cited by 1 | Viewed by 466
Abstract
Ammonia (NH3) is a promising carbon-free marine fuel that is aligned with the International Maritime Organization’s (IMO) decarbonization targets. However, its high toxicity and flammability pose serious explosion hazards, particularly in confined fuel preparation spaces. This study investigates the influence of [...] Read more.
Ammonia (NH3) is a promising carbon-free marine fuel that is aligned with the International Maritime Organization’s (IMO) decarbonization targets. However, its high toxicity and flammability pose serious explosion hazards, particularly in confined fuel preparation spaces. This study investigates the influence of the ignition source location on the explosion characteristics of ammonia within an ammonia fuel preparation room using computational fluid dynamics (CFD) simulations via the FLACS platform. Nineteen ignition scenarios are established along the X-, Y-, and Z-axes. Key parameters, such as the maximum overpressure, pressure rise rate, reduction rate of flammable gas, ignition detection time, and spatial–temporal distributions of temperature and combustion products, are evaluated. The results show that the ignition location plays a critical role in the explosion dynamics. Ceiling-level ignition (Case 19) produced the highest overpressure (4.27 bar) and fastest pressure rise rate (2.20 bar/s), indicating the most hazardous condition. In contrast, the forward wall ignition (Case 13) resulted in the lowest overpressure (3.24 bar) and limited flame propagation. These findings provide essential insights into the risk assessment and safety design of ammonia-fueled marine systems. Full article
(This article belongs to the Special Issue Advances in Combustion Science and Engineering)
Show Figures

Figure 1

26 pages, 8226 KiB  
Article
Effect of Improved Combustion Chamber Design and Biodiesel Blending on the Performance and Emissions of a Diesel Engine
by Ziming Wang, Yanlin Chen, Chao He, Dongge Wang, Yan Nie and Jiaqiang Li
Energies 2025, 18(11), 2956; https://doi.org/10.3390/en18112956 - 4 Jun 2025
Viewed by 535
Abstract
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion [...] Read more.
This study aims to investigate the impact of combustion chamber geometry and biodiesel on the performance of diesel engines under various load conditions. Simulations were conducted using AVL FIRE software, followed by experimental validation to compare the performance of the prototype Omega combustion chamber with the optimized TCD combustion chamber (T for turbocharger, C for charger air cooling, and D for diesel particle filter). This study utilized four types of fuels: D100, B10, B20, and B50, and was conducted under different load conditions at a rated speed of 1800 revolutions per minute (rpm). The results demonstrate that the TCD combustion chamber outperforms the Omega chamber in terms of indicated thermal efficiency (ITE), in-cylinder pressure, and temperature, and also exhibits a lower indicated specific fuel consumption (ISFC). Additionally, the TCD chamber shows lower soot and carbon monoxide (CO) emissions compared to the Omega chamber, with further reductions as the load increases and the biodiesel blend ratio is raised. The high oxygen content in biodiesel helps to reduce soot and CO formation, while its lower sulfur content and heating value contribute to a decrease in combustion temperature and a reduction in nitrogen oxide (NOx) production. However, the NOx emissions from the TCD chamber are still higher than those from the Omega chamber, possibly due to the increased in-cylinder temperature resulting from its combustion chamber structure. The findings provide valuable insights into diesel engine system design and the application of oxygenated fuels, promoting the development of clean combustion technologies. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 3731 KiB  
Article
Investigation of the Effects and Mechanisms of Biomass-Derived Alternative Fuels on Cement Clinker Formation and Hydration Processes
by Zhengquan Wang, Yongmin Zhou, Sudong Hua and Dongrui Zhang
Appl. Sci. 2025, 15(11), 6294; https://doi.org/10.3390/app15116294 - 3 Jun 2025
Viewed by 497
Abstract
This study evaluates the potential of biomass fuels (10 wt% and 20 wt%) as partial coal replacements in combustion and their effects on clinker performance. Cement was produced by co-grinding clinker with gypsum, and hydration products were analyzed. Potassium and sodium carbonates were [...] Read more.
This study evaluates the potential of biomass fuels (10 wt% and 20 wt%) as partial coal replacements in combustion and their effects on clinker performance. Cement was produced by co-grinding clinker with gypsum, and hydration products were analyzed. Potassium and sodium carbonates were introduced to create highly alkaline conditions, thereby simulating the effect of alkali metals in biomass-derived fuel ash on the mineral phases of clinker under high substitution ratios. The results showed biomass fuels’ low ignition point and high volatile matter content improved mixed fuels combustion, increasing the average combustion rate by 0.52%~2.28% and reducing the ignition temperature by up to 56 °C. At low substitution levels, biomass ash did not adversely affect clinker mineral composition or cement properties. However, the highly alkaline environment suppressed the formation of tricalcium silicate (C3S) in the clinker, resulting in an increased content of free calcium oxide(f-CaO). Simultaneously, it promotes the formation of sulfates (K2SO4, Na2SO4) and sodium silicate (Na2Si2O5). Full article
Show Figures

Figure 1

26 pages, 16158 KiB  
Article
Optimization of Blighia sapida Seed Oil Biodiesel Production: A Sustainable Approach to Renewable Biofuels
by Oyetola Ogunkunle and Christopher C. Enweremadu
Resources 2025, 14(6), 89; https://doi.org/10.3390/resources14060089 - 26 May 2025
Viewed by 729
Abstract
This study aims to optimize the production of biodiesel from Blighia sapida (Ackee) seed oil, a non-edible and underutilized feedstock, as a sustainable alternative to conventional fossil-based diesel fuels. The transesterification of Blighia sapida seed oil was optimized using Response Surface Methodology (RSM) [...] Read more.
This study aims to optimize the production of biodiesel from Blighia sapida (Ackee) seed oil, a non-edible and underutilized feedstock, as a sustainable alternative to conventional fossil-based diesel fuels. The transesterification of Blighia sapida seed oil was optimized using Response Surface Methodology (RSM) with a Box–Behnken experimental design. Three process variables, reaction time, temperature, and methanol-to-oil molar ratio, were selected for modeling biodiesel yield. The resulting biodiesel was characterized by physicochemical properties in accordance with ASTM D6751 standards. The optimal transesterification conditions were found to be 60 min, 60 °C, and a methanol-to-oil ratio of 3:1, yielding 98.36% biodiesel. This represents an improvement over the unoptimized yield of 94.3% at a 6:1 molar ratio. Experimental validation produced an average yield of 97.49%, confirming the model’s reliability. The produced biodiesel exhibited a kinematic viscosity of 4.02 mm2/s, cetane number of 54.6, flash point of 138 °C, and acid value of 0.421 mg KOH/g, which are all within the ASTM D6751 standard limits. This work is among the first to systematically optimize Blighia sapida biodiesel production using RSM. The results demonstrate its viability as a clean-burning, high-quality biodiesel fuel with promising fuel properties and environmental benefits. Its high cetane number and low methanol requirement enhance its combustion performance and production efficiency, positioning Blighia sapida as a competitive feedstock for sustainable biofuel development. Full article
Show Figures

Figure 1

18 pages, 4401 KiB  
Article
Computational Fluid Dynamics Investigation of Flow and Flame Behavior in Natural Gas Burners for Borax Pentahydrate Furnaces
by Mehmed Rafet Ozdemir, Ramazan Sener, İlker Solakoglu and Bahadır Tunaboylu
Processes 2025, 13(6), 1660; https://doi.org/10.3390/pr13061660 - 26 May 2025
Viewed by 832
Abstract
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This [...] Read more.
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This study addressed this gap by employing three-dimensional computational fluid dynamics (CFD) simulations to model two operational natural gas-fired furnaces with distinct burner configurations (four-burner and six-burner systems). The analysis focused on optimizing burner placement, specifically, the axial distance and inclination angle, to enhance thermal uniformity and reduce refractory wall damage caused by aggressive high-temperature borate corrosion. A comprehensive parametric study of twelve burner configurations revealed that tilting the burners at 5–10° significantly improved temperature uniformity while reducing peak wall temperatures and mitigating localized hot spots. The optimal design, incorporating a 10° burner angle and a staggered burner arrangement (Case 11), attained a melt pool temperature of 1831.3 K and a charging average wall temperature of 1812.0 K. These values represent essential benchmarks for maximizing furnace efficiency and operational stability. The modified designs for the four- and six-burner systems led to improved temperature distributions and a notable reduction in maximum wall temperatures, directly contributing to longer maintenance intervals and improved refractory durability. The findings of this study confirm that minor geometrical and angular adjustments in burner placement can yield significant performance gains. The validated CFD approach and proposed design modifications offer a scalable, low-cost strategy for improving combustion efficiency and furnace lifespan in borax processing facilities. Full article
Show Figures

Figure 1

16 pages, 3911 KiB  
Article
Flue Gas Temperature Distribution as a Function of Air Management in a High-Temperature Biomass Burner
by Aleksandra Dzido, Michalina Kurkus-Gruszecka, Marcin Wilczyński and Piotr Krawczyk
Energies 2025, 18(11), 2719; https://doi.org/10.3390/en18112719 - 23 May 2025
Viewed by 412
Abstract
Nowadays, as a result of the increasing awareness of European societies and new legal regulations, the role of renewable energy sources in individual heating is growing. One of the forms of renewable heat and electricity production is the use of biomass pellet burners [...] Read more.
Nowadays, as a result of the increasing awareness of European societies and new legal regulations, the role of renewable energy sources in individual heating is growing. One of the forms of renewable heat and electricity production is the use of biomass pellet burners coupled with Stirling engines. To ensure high system efficiency, the combustion process of this type of fuel requires an appropriate design of the burners, which can provide high-temperature flue gases. This requirement may be challenging, as the long operation of such a burner may cause the thermal degradation of its components, mainly the upper burner wall. The subject of this analysis was a burner with a nominal power of 10 kW. As the analysis tool, a previously validated CFD model was used. In this work, two ways of thermal degradation prevention are presented. The first one is geometry optimization via secondary air hole distribution. The results show that an appropriate geometrical design of the burner may be an efficient way of shifting the high-temperature zone to the burner axis, which may mitigate the thermal degradation risk. Secondly, the inlet air mass flow is changed to show its impact on the presence and location of the high-temperature zone. Both methods can be treated as interesting ways for solving the challenge of the long-term operation of high-temperature biomass burners by avoiding thermal degradation. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

13 pages, 5662 KiB  
Article
Characterization of the Lower Limit of CH4 Explosion in Different Atmospheres over a Wide Temperature Range
by Jida Zhang, Qinghe Bao, Junhui Yang, Haibin Guan, Zhongcheng Ma, Bari Wulan and Sheng Li
Processes 2025, 13(5), 1608; https://doi.org/10.3390/pr13051608 - 21 May 2025
Viewed by 533
Abstract
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental [...] Read more.
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental setup, performing in-depth experimental analyses across a broad temperature range from 25 °C to 600 °C. The results demonstrate that elevated temperatures significantly reduced the methane’s lower explosion limit (LEL), with the LEL decreasing to approximately 40% of its room-temperature value at 600 °C. The investigation systematically examined the influence mechanisms of common industrial atmospheric components, including carbon dioxide (CO2), ammonia (NH3), oxygen (O2), and water vapor (H2O) on methane explosion behavior. Key findings reveal that CO2 exhibited notable suppression effects, increasing methane’s LEL by approximately 15% per 10% increment in CO2 concentration. NH3 demonstrated dual mechanisms, promoting methane explosions at low concentrations (<5%) while inhibiting them at higher concentrations. Increased O2 concentration significantly expanded the methane’s explosive range, with the LEL decreasing by about 22% when O2 concentration increased from 21% to 30%. Water vapor manifested differentiated impacts depending on temperature regimes, primarily elevating LEL through dilution effects below 200 °C while reducing LEL via radical reaction promotion above 400 °C. Furthermore, this study reveals synergistic coupling effects between temperature and gas components—for instance, CO2’s suppression efficacy weakened under high temperatures, whereas NH3’s promotion effect intensified. These discoveries provide scientific foundations for formulating industrial safety standards, designing explosion-proof equipment, and conducting risk assessments in production processes. Full article
Show Figures

Figure 1

14 pages, 4245 KiB  
Article
Experimental and Simulation-Based Study on Thermal Runaway Characteristics of 18650 Lithium-Ion Batteries and Thermal Propagation Patterns in Battery Packs
by Yao Yao, Xu Peng, Lei Gao, Haozhe Xing, Xiaohui Xu, Juan Gu, Lu Liu, Songlin Yue, Yanyu Qiu, Youning Wang and Zhi Zhang
Batteries 2025, 11(5), 202; https://doi.org/10.3390/batteries11050202 - 21 May 2025
Viewed by 1257
Abstract
The thermal runaway of lithium-ion batteries is a critical factor influencing their safety. Investigating the thermal runaway characteristics is essential for battery safety design. In this study, the thermal runaway characteristics of 18650 lithium-ion batteries under different SOCs were systematically analyzed by experiment [...] Read more.
The thermal runaway of lithium-ion batteries is a critical factor influencing their safety. Investigating the thermal runaway characteristics is essential for battery safety design. In this study, the thermal runaway characteristics of 18650 lithium-ion batteries under different SOCs were systematically analyzed by experiment and simulation. It was found that at high SOC (100%), the highly lithium state accelerated lattice oxygen release, promoted the formation of LiNiO and intensified electrolytic liquid oxygenation combustion, while at low SOC (20%), the reduction environment dominated, and the metal Ni and residual graphite were significantly enriched. Gas analysis shows that CO2 and H2 account for more than 80%, and their proportion is regulated by SOC. Temperature and pressure monitoring showed that the increase in SOC significantly increased the thermal runaway peak temperature (100% SOC up to 508.4 °C) and pressure (0.531 MPa).The simulation results show that when the battery pack is out of control, the ejection fire and explosion pressure wave are concentrated in the middle and upper region (overpressure up to 0.8 MPa). This study reveals the mechanism by which SOC affects the path of product and gas generation by regulating the oxidation/reduction balance, which lays a theoretical and simulation foundation for the safe design of batteries and the quantitative evaluation of thermal runaway. Full article
Show Figures

Figure 1

30 pages, 13413 KiB  
Article
Experimental Study on Peak Shaving with Self-Preheating Combustion Equipped with a Novel Compact Fluidized Modification Device
by Hongliang Ding, Shuyun Li, Ziqu Ouyang, Shujun Zhu, Xiongwei Zeng, Haoyang Zhou, Kun Su, Hongshuai Wang and Jicheng Hui
Energies 2025, 18(10), 2555; https://doi.org/10.3390/en18102555 - 15 May 2025
Viewed by 374
Abstract
Under the strategic objectives of carbon peaking and carbon neutrality, it is inevitable for large-scale integration of renewable energy into thermal power units. Nevertheless, improving the capacity of these units for flexible peak shaving is necessary on account of the intermittent and instability [...] Read more.
Under the strategic objectives of carbon peaking and carbon neutrality, it is inevitable for large-scale integration of renewable energy into thermal power units. Nevertheless, improving the capacity of these units for flexible peak shaving is necessary on account of the intermittent and instability of renewable energy. As a novel combustion technology, self-preheating combustion technology offers enormous merits in this aspect, with increasing combustion efficiency (η) and controlling NOx emissions simultaneously. Considering production and operation cost, installation difficulty and environmental pollution, this study innovatively proposed a compact fluidized modification device (FMD) on the basis of this technology and explored the influences of buffer tank and operation load on operation stability, fuel modification, combustion characteristics and NOx emissions on an MW grade pilot-scale test platform. Afterwards, the comparative analysis on performance disparities was further launched between FMD and traditional self-preheating burner (TSB). Adding the buffer tank enhanced operation stability of FMD and improved its modification conditions, and thus promoted NOx emission control. Optimal modification efficiency was realized at medium and high loads, respectively, for high-volatile and low-volatile coals. As load increased, η increased for high-volatile coal, but with NOx emissions increasing. In comparison, this condition reduced NOx emissions with high η for low-volatile coal. Compared to TSB, FMD demonstrated more conspicuous advantages in stable operation and fuel modification. Simultaneously, FMD was more conducive to realizing clean and efficient combustion at high temperatures. In industrial applications, appropriate FMD or TSB should be picked out grounded in diverse application requirements. By optimizing burner structure and operational parameters, original NOx emissions decreased to a minimum of 77.93 mg/m3 with high η of 98.59% at low load of 30%. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

7 pages, 858 KiB  
Proceeding Paper
A Model-Based Analysis of Direct Methanol Production from CO2 and Renewable Hydrogen
by Azizbek Kamolov, Zafar Turakulov, Botir Shukurillaevich Usmonov, Khayrulla Pulatov, Abdulaziz Bakhtiyorov, Bekjon Urunov and Adham Norkobilov
Eng. Proc. 2025, 87(1), 66; https://doi.org/10.3390/engproc2025087066 - 14 May 2025
Viewed by 355
Abstract
Methanol synthesis from CO2 is a key strategy for carbon capture and utilization, offering a viable solution to mitigate climate change. The direct synthesis of methanol not only reduces greenhouse gases but also produces valuable chemicals for industrial applications. The aim of [...] Read more.
Methanol synthesis from CO2 is a key strategy for carbon capture and utilization, offering a viable solution to mitigate climate change. The direct synthesis of methanol not only reduces greenhouse gases but also produces valuable chemicals for industrial applications. The aim of this study is to model and optimize the methanol synthesis process from CO2, focusing on maximizing methanol yield while minimizing CO2 content in the product stream. In this work, a detailed methanol synthesis process simulation was developed using the Soave–Redlich–Kwong equation of state in the Aspen Plus V11 commercial software environment. Pure CO2 streams, which are produced from the post-combustion carbon capture process, and renewable hydrogen streams were used. The results are compared with open literature sources. In addition, a sensitivity analysis was employed to evaluate the effects of the pressure, temperature, and recirculation fraction on process efficiency. The results showed that the highest methanol yield of 76,838 kg/h was obtained at 80 bar, 276 °C, and a recirculation fraction of 0.9. The lowest CO2 content in the final product (73 kg/h) occurred at 80 bar, 220 °C, and a recirculation fraction of 0.6. These findings demonstrate the trade-off between maximizing methanol output and reducing unreacted CO2. In conclusion, optimal operating conditions for both the high yield and low CO2 content were identified, providing a foundation for further process refinement. Future work will involve developing a more complex multi-reactor model and conducting economic assessments for large-scale industrial implementation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop