Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,141)

Search Parameters:
Keywords = high-temperature aggregates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2904 KB  
Article
Morphological and Structural Analysis of Pyrolytic Carbon from Simple Thermal Methane Pyrolysis
by Michał Wojtasik, Wojciech Krasodomski, Grażyna Żak, Katarzyna Wojtasik and Wojciech Pakieła
Appl. Sci. 2025, 15(19), 10742; https://doi.org/10.3390/app151910742 - 6 Oct 2025
Abstract
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), [...] Read more.
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), process efficiency (36.1%), and very high selectivity (98.9%) towards hydrogen production, highlighting its potential as a CO2-free hydrogen generation method. Distinct carbon morphologies were observed depending on the formation areas within the reactor: a predominant flake-like silver carbon formed on reactor walls at temperatures between 600 and 980 °C (accounting for 91% of the solid product) and a minor powdery carbon formed near 980–1000 °C (9% of the solids). The powdery carbon exhibited a high specific surface area (125.3 m2/g), substantial mesoporosity (60%), and porous spherical aggregates, indicating an amorphous structure. In contrast, flake-like carbon demonstrated a low surface area (1.99 m2/g), high structural order confirmed by Raman spectroscopy, and superior thermal stability, making it suitable for advanced applications requiring mechanical robustness. Additionally, polycyclic aromatic hydrocarbons were detected in cooler zones of the reactor, suggesting side reactions in low-temperature areas. The study underscores the impact of temperature zones on carbon structure and properties, emphasizing the importance of precise thermal control to tailor carbon materials for diverse industrial applications while producing clean hydrogen. Full article
Show Figures

Figure 1

24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 - 5 Oct 2025
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

16 pages, 1827 KB  
Article
Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
by Yi Wei, Jie Xu, Jie Jiang, Tairong Lu and Zuohua Liu
Materials 2025, 18(19), 4589; https://doi.org/10.3390/ma18194589 - 2 Oct 2025
Abstract
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like [...] Read more.
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like morphology owing to limitations in solid-state mass transfer. Researchers have employed various mineralizers to regulate the morphology of α-Al2O3 powders; however, the preparation of micron-sized highly spherical α-Al2O3 powders via solid-state calcination is still a great challenge. In this work, micron-sized near-spherical α-Al2O3 powders were synthesized through high-temperature calcination using hydratable alumina (ρ-Al2O3) as precursor with water-soluble mineralizer ammonium fluoroborate (NH4BF4). ρ-Al2O3 can undergo a hydration reaction with water to form AlO(OH) and Al(OH)3 intermediates, serving as an excellent precursor. With the addition of 0.1 wt% NH4BF4, the product exhibits an optimal near-spherical morphology. Excessive addition (>0.2wt%), however, significantly promotes the transformation of α-Al2O3 from a near-spherical to a plate-like structure. Further studies reveal that the introduction of NH4BF4 not only modulates the crystal morphology but also effectively reduces the content of sodium impurities in the powder through a high-temperature volatilization mechanism, thereby enhancing the thermal conductivity of the powder. It is shown that the thermal conductivity of the micron-sized α-Al2O3/ epoxy resin composites reaches 1.329 ± 0.009 W/(m·K), which is 7.4 times that of pure epoxy resin. Full article
(This article belongs to the Section Metals and Alloys)
14 pages, 6591 KB  
Article
One-Step Fe/N Co-Doping for Efficient Catalytic Oxidation and Selective Non-Radical Pathway Degradation in Sludge-Based Biochar
by Zupeng Gong, Shixuan Ding, Mingjie Huang, Wen-da Oh, Xiaohui Wu and Tao Zhou
Catalysts 2025, 15(10), 934; https://doi.org/10.3390/catal15100934 - 1 Oct 2025
Abstract
This study presents the preparation of iron and nitrogen co-doped sludge-based biochar (FeCN-MSBC) and iron oxide-doped biochar (FeO-MSBC) by ball milling municipal sludge with different iron precursors (K3Fe(CN)6 and Fe2O3), followed by pyrolysis. These biochars were [...] Read more.
This study presents the preparation of iron and nitrogen co-doped sludge-based biochar (FeCN-MSBC) and iron oxide-doped biochar (FeO-MSBC) by ball milling municipal sludge with different iron precursors (K3Fe(CN)6 and Fe2O3), followed by pyrolysis. These biochars were utilized to activate persulfate (PMS) for the degradation of phenolic pollutants. The results demonstrate that FeCN-MSBC, formed by the introduction of K3Fe(CN)6, contains Fe/N phases, with surface Fe sites exhibiting a lower oxidation state, which significantly enhances PMS activation efficiency. In contrast, FeO-MSBC, due to the aggregation of Fe2O3/Fe3O4, shows relatively lower catalytic activity. The FeCN-MSBC/PMS system degrades pollutants via a synergistic mechanism involving non-radical pathways mediated by 1O2 and electron transfer processes (ETP) catalyzed by surface Fe. Electrochemical oxidation and quenching experiments confirm that ETP is the dominant pathway. FeCN-MSBC, prepared at a pyrolysis temperature of 600 °C and an Fe loading of 3 mmol/g TSS, exhibited the best performance, achieving a phenol degradation rate constant (kobs) of 0.127 min−1, 4.5 times higher than that of undoped biochar (MSBC). FeCN-MSBC/PMS maintained high efficiency across a wide pH range and in complex water matrices, exhibiting excellent stability over multiple cycles, demonstrating strong potential for practical applications. This study provides an effective strategy for simultaneous Fe and N doping in sludge-derived biochar and offers mechanistic insights into Fe/N synergistic activation of PMS for practical water treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

22 pages, 4360 KB  
Article
An Experimental Study on the Thermal Insulation Properties of Concrete Containing Wood-Based Biochar
by Ji-Hun Park, Kwang-Mo Lim, Gum-Sung Ryu, Kyung-Taek Koh and Kyong-Chul Kim
Appl. Sci. 2025, 15(19), 10560; https://doi.org/10.3390/app151910560 - 29 Sep 2025
Abstract
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). [...] Read more.
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). The key physical, mechanical, thermal, and microstructural properties, including the unit weight, porosity, compressive strength, flexural strength, and thermal conductivity, were evaluated via SEM and EDS analyses. The results revealed that although increasing the biochar content reduced the mechanical strength, it significantly improved the thermal insulation performance because of the porous structure of the biochar. At low w/b ratios and 5–10% biochar content, sufficient mechanical properties were retained, indicating a viable design range. Higher replacement ratios (>15%) led to excessive porosity, reduced hydration, and impaired durability. This study quantitatively analyzed the interproperty correlations, confirming that the strength and thermal performance are closely linked to the internal matrix density and porosity. These findings suggest that biochar-based concrete has potential for use in thermal energy storage systems, high-temperature insulation, and low-carbon construction. The low-carbon effect is achieved both by sequestering stable carbon within the concrete matrix and by partially replacing cement, thereby reducing CO2 emissions from cement production. Moreover, the results highlight a strong correlation between increased porosity, enhanced thermal insulation, and reduced strength, thereby offering a solid foundation for sustainable material design. In particular, the term ‘high temperature’ in this context refers to exposure conditions above approximately 200~400 °C, as reported in previous studies. However, this should be considered as a potential application to be validated in future experiments rather than a confirmed outcome of this study. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

21 pages, 3393 KB  
Article
Predicting the Potential Spread of Diabrotica virgifera virgifera in Europe Using Climate-Based Spatial Risk Modeling
by Ioana Grozea, Diana Maria Purice, Snejana Damianov, Levente Molnar, Adrian Grozea and Ana Maria Virteiu
Insects 2025, 16(10), 1005; https://doi.org/10.3390/insects16101005 - 27 Sep 2025
Abstract
Diabrotica virgifera virgifera Le Conte, 1868 (Coleoptera: Chrysomelidae), known as the western corn rootworm, is one of the most important alien insect pests affecting maize crops globally. It causes significant economic losses by feeding on the roots, which affects plant stability and nutrient [...] Read more.
Diabrotica virgifera virgifera Le Conte, 1868 (Coleoptera: Chrysomelidae), known as the western corn rootworm, is one of the most important alien insect pests affecting maize crops globally. It causes significant economic losses by feeding on the roots, which affects plant stability and nutrient absorption, as well as by attacking essential aerial organs (leaves, silk, pollen). Since its accidental introduction into Europe, the species has expanded its range across maize-growing regions, raising concerns about future distribution under climate change. This study aimed to estimate the risk of pest establishment across Europe over three future time frames (2034, 2054, 2074) based on geographic coordinates, climate data, and maize distribution. Spatial simulations were performed in QGIS using national centroid datasets, risk classification criteria, and temperature anomaly maps derived from Copernicus and ECA&D databases for 1992–2024. The results indicate consistently high risk in southern and southeastern regions, with projected expansion toward central and western areas by 2074. Risk zones showed clear spatial aggregation and directional spread correlated with warming trends and maize availability. The pest’s high reproductive potential, thermal tolerance, and capacity for human-assisted dispersal further support these predictions. The model emphasizes the need for expanded surveillance in at-risk zones and targeted policies in areas where D. v. virgifera has not yet established. Future work should refine spatial predictions using field validation, genetic monitoring, and dispersal modeling. The results contribute to anticipatory pest management planning and can support sustainable maize production across changing agroclimatic zones in Europe. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

20 pages, 6706 KB  
Article
Effect of Warm-Mix Additive USP on the Performance of Rubberized Asphalt and Fiber-Reinforced Rubberized Asphalt RAP Interlayer
by Jianhang Han, Bin Ding, Yong Hua, Wenbo Liu and Jun Li
Polymers 2025, 17(19), 2616; https://doi.org/10.3390/polym17192616 - 27 Sep 2025
Abstract
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance [...] Read more.
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance of polymer-modified asphalt and fiber-reinforced RAP interlayers were systematically investigated. The results indicate that 5% USP optimally improves low-temperature flexibility (141.1% increase in ductility, 28.48% reduction in creep stiffness) while maintaining adequate high-temperature stability, and simultaneously achieves an 82.01% reduction in total VOC emissions at 150 °C. Microscopic analysis and DIC tests confirm that USP enhances polymer–asphalt–aggregate interactions, leading to improved adhesion, reduced water permeability, and extended fatigue life. This work provides a fundamental understanding of polymer–binder–aggregate synergy and offers a practical pathway toward greener, high-performance recycled asphalt pavement technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 5752 KB  
Article
Assessment of the Post-Thermal Performance of Concrete Modified with Treated and Untreated Crumb Rubber
by Barun Joshi, Karingamanna Jayanarayanan and Mini K. Madhavan
Sustainability 2025, 17(19), 8599; https://doi.org/10.3390/su17198599 - 25 Sep 2025
Abstract
Crumb rubber, obtained from discarded tires, presents a sustainable alternative in the construction industry, particularly in rubberized concrete. Treated crumb rubber offers improved mechanical performance; however, limited reports are available on its behavior at elevated temperatures. This study investigates the performance of rubberized [...] Read more.
Crumb rubber, obtained from discarded tires, presents a sustainable alternative in the construction industry, particularly in rubberized concrete. Treated crumb rubber offers improved mechanical performance; however, limited reports are available on its behavior at elevated temperatures. This study investigates the performance of rubberized concrete containing treated and untreated crumb rubber when exposed to elevated temperatures. The treatments employed are chemical (sodium hydroxide (NaOH)) and physical (cement coating) methods. M30-grade concrete was used as a control mix, and crumb rubber (CR) was added by replacing a portion of the fine aggregate. In order to mitigate the strength reduction, silica fume and polypropylene fibers were added. An optimal mix was determined using Taguchi’s L9 orthogonal array, by varying proportions of crumb rubber, silica fume (SF), and polypropylene (PP) fiber. The ideal mix contained 10% CR, 5% SF, and 0.2% PP fiber based on compressive strength. Specimens were cured for 28 days and exposed to temperatures of 200 °C, 400 °C, 600 °C, and 800 °C for 1 h. Mechanical properties such as compressive strength, split tensile strength, and modulus of elasticity were evaluated, along with an ultrasonic pulse velocity test. The results indicate that treated crumb rubber enhances bonding, improving the mechanical and thermal performance of rubberized concrete under high temperature. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

19 pages, 3800 KB  
Article
The Size Effects of Modified Nano-Silica on the Physical Properties of Resorcinol-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Gels in Harsh Reservoir Conditions
by Xun Zhong, Yuxuan Yang, Jiating Chen, Yudan Dong, Sheng Lei, Hui Zhao, Hong He and Lifeng Chen
Gels 2025, 11(10), 769; https://doi.org/10.3390/gels11100769 - 24 Sep 2025
Viewed by 9
Abstract
Nano-silica is widely used to enhance gel properties, but its size, concentrations, and aggregation behaviors all matter. The influencing rules of these factors remain unclear especially in harsh reservoir conditions. This study presented a comprehensive investigation into the gelation, rheological, and plugging properties [...] Read more.
Nano-silica is widely used to enhance gel properties, but its size, concentrations, and aggregation behaviors all matter. The influencing rules of these factors remain unclear especially in harsh reservoir conditions. This study presented a comprehensive investigation into the gelation, rheological, and plugging properties of phenolic polymer gels reinforced by modified nano-silica (GSNP) of different sizes and concentrations in harsh reservoir conditions. Specifically, the nano-silica was modified with a highly soluble silane, and gel properties were evaluated through rheological, differential scanning calorimetry (DSC), and sandpack flooding tests. The results showed that the incorporation of GSNP prolonged the gelation time, enhanced gel strength, and improved stability, allowing the gelation solution to enter deeper into the formation while maintaining long-time effectiveness. The optimal gel system was obtained with 0.4 wt.% GSNP-30, under which condition the storage modulus increased by approximately 14 times, and the content of non-freezable bound water more than doubled. This system exhibited plugging efficiency exceeding 80% in formations with permeabilities ranging from 1000 to 6000 millidarcy and enhanced the oil recovery factor by over 25%. The reinforcement mechanisms were attributed to the adsorption of GSNP onto polymer chains and its role in filling the gel matrix, which enhanced polymer hydrophilicity, suppressed polymer aggregation/curling, prevented ion penetration, and promoted the formation of a more uniform gel network. Careful optimization of nanoparticle size and concentration was essential to avoid the detrimental effects due to nanoparticle overfilling and aggregation. The novelty of this study lies in the practicable formulation of thermal and salt-tolerant gel systems with facile modified nano-silica of varying sizes and the systematic study of size and concentration effects. These findings offer practical guidance for tailoring nanoparticle parameters to cater for high-temperature and high-salinity reservoir conditions. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

17 pages, 5510 KB  
Article
Analysis of the Mechanical Properties, Durability, and Micro-Mechanisms of Alkali-Activated Fly Ash Mortar
by Chunwang Sun, Baoxi Zuo, Zengshui Liu, Yi Si, Hong Wu, Ting Liu and Yong Huang
Appl. Sci. 2025, 15(19), 10316; https://doi.org/10.3390/app151910316 - 23 Sep 2025
Viewed by 170
Abstract
The search for sustainable and economical alternative materials has become a top priority in response to the increasing scarcity of natural river sand resources; as a result, a new alkali-activated granulated blast-furnace slag (GGBS)/fly ash (FA) composite cement material innovatively using Tuokexun Desert [...] Read more.
The search for sustainable and economical alternative materials has become a top priority in response to the increasing scarcity of natural river sand resources; as a result, a new alkali-activated granulated blast-furnace slag (GGBS)/fly ash (FA) composite cement material innovatively using Tuokexun Desert sand as aggregate has emerged as a good strategy. In this study, GGBS/FA was used in place of cement; the effects of the water glass modulus, alkali equivalent, and FA content on the material’s properties were systematically studied, and the hydration reaction mechanism and durability characteristics were revealed. The material was found to form a stable calcium aluminosilicate hydrate (C-(A)-S-H) gel structure under a specific ratio, which not only displayed excellent mechanical properties (a compressive strength of up to 83.2 MPa), but also showed outstanding resistance to high temperatures (>600 °C) and acid–alkali erosion. Microscopic analysis showed that the phase transition behaviour of C-(A)-S-H was a key factor affecting the material properties under high-temperature and acid–alkali environments. This study provides a new method for the preparation of high-performance building materials using local materials in desert areas, which is of great significance for promoting the construction of sustainable infrastructure in arid areas. Full article
(This article belongs to the Special Issue Novel Construction Material and Its Applications)
Show Figures

Figure 1

18 pages, 2656 KB  
Article
Photocatalytic Degradation of Safranin O: Unraveling the Roles of Dissolved Gases, Environmental Matrices, and Reactive Species
by Meriem Bendjama and Oualid Hamdaoui
Catalysts 2025, 15(9), 914; https://doi.org/10.3390/catal15090914 - 22 Sep 2025
Viewed by 135
Abstract
This study investigates the impacts of the gas environment, water matrix, and reactive species on the TiO2-mediated photocatalytic degradation of safranin O (SO), a dye commonly found in wastewater. A slurry reactor (UVA, 365 nm) was used to quantify SO oxidation [...] Read more.
This study investigates the impacts of the gas environment, water matrix, and reactive species on the TiO2-mediated photocatalytic degradation of safranin O (SO), a dye commonly found in wastewater. A slurry reactor (UVA, 365 nm) was used to quantify SO oxidation while systematically varying the SO concentration (5–40 mg/L), the TiO2 loading (0–3 g/L), the temperature (15–45 °C), and the pH (2–12). The dissolved gases (air, nitrogen, and argon) and matrices (deionized water, mineral water, and seawater) were also examined. Eight mechanistic probes (ascorbic acid, methanol, azide, nitrite, benzoquinone, oxalate, sucrose, and phenol) were used to identify active oxidants. UVA/TiO2 achieved rapid decolorization in approximately 90 min at 10 mg/L of SO and 0.4 g/L of TiO2. Decolorization rates decreased with increasing SO concentration due to active-site competition and inner-filter effects. Rates also exhibited a bell-shaped dependence on TiO2 loading due to light scattering and aggregation at high solids concentrations. Temperature exhibited a non-monotonic profile with an optimum around 25 °C, and the pH displayed an optimum range with maximal removal occurring around pH 10 and declining at pH 12. Air saturation outperformed N2 and Ar, indicating that O2 is the terminal electron acceptor. Photocatalytic performance decreased in the order deionized water > mineral water > seawater, owing to bicarbonate/chloride scavenging and ionic-strength effects. Scavenger tests converged on OH dominance, with measurable contributions from superoxide/hydrogen peroxide (O2•−/H2O2) and valence-band holes (h+); singlet oxygen (1O2) played a minor role. These findings underscore the critical interplay between operational and environmental factors and offer a practical framework for scaling TiO2-based SO abatement in real waters. Full article
Show Figures

Figure 1

21 pages, 1333 KB  
Article
Structural Properties Before and After Ripening of Ice Cream Made with Different Dairy Fat Bases
by Paulo Henrique da Silva Santos, Cristina Kaori Suzuki and Suzana Caetano da Silva Lannes
Foods 2025, 14(18), 3276; https://doi.org/10.3390/foods14183276 - 22 Sep 2025
Viewed by 237
Abstract
Ice cream is a frozen aerated dessert composed of milk solids, sugars, stabilizers, and fat—with the latter being a key component in defining its structural and sensory properties. This study evaluated the influence of four fat sources—low-trans vegetable fat (T1), butter (T2), UHT [...] Read more.
Ice cream is a frozen aerated dessert composed of milk solids, sugars, stabilizers, and fat—with the latter being a key component in defining its structural and sensory properties. This study evaluated the influence of four fat sources—low-trans vegetable fat (T1), butter (T2), UHT cream (T3), and fresh cream (T4)—on the physical and structural characteristics of ice cream, including overrun, melting resistance, texture, color, and rheology, at different stages of processing (before and after maturation). Oscillatory rheological analysis revealed predominantly elastic behavior (G′ > G″) after maturation in all samples, indicating a stable viscoelastic solid structure. Formulations containing T3 and T1 showed the highest overrun values, indicating greater air incorporation, whereas the butter-based formulation (T2) showed the lowest overrun values. Melting resistance followed the following order: T3 > T4 > T2 > T1; therein, the UHT cream formulation exhibited the greatest thermal stability, which was likely due to protein denaturation and aggregation induced by high-temperature processing. Texture analysis showed that the T1 formulation required the lowest maximum extrusion force, while T2 required the highest, reflecting an inverse correlation with overrun values. T1 also displayed the most distinct rheological profile, which was likely due to its specific crystallization behavior and reduced destabilization of the fat globule membrane—which favored the development of a more structured internal network. These findings demonstrate that both the source and processing of fat have a significant impact on the formation of the structural matrix and the final functional properties of ice cream. The results offer technical insights for the development of formulations tailored to specific physical characteristics, optimizing texture, stability, and performance throughout the production process. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 3751 KB  
Article
Local Structural Changes in High-Alumina, Low-Lithium Glass-Ceramics During Crystallization
by Minghan Li, Yan Pan, Shuguang Wei, Yanping Ma, Chuang Dong, Hongxun Hao and Hong Jiang
Nanomaterials 2025, 15(18), 1449; https://doi.org/10.3390/nano15181449 - 20 Sep 2025
Viewed by 278
Abstract
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 [...] Read more.
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 crystals precipitated when the heat treatment temperature reached 850 °C, indicating that a large number of nuclei had already formed during the earlier stages of heat treatment. Field emission transmission electron microscopy used to observe the microstructure of glass-ceramics after staged heat treatment revealed that cation migration occurred during the nucleation process. Zn and Mg aggregated around Al to form (Zn, Mg)Al2O4 nuclei, which provided sites for crystal growth. Moreover, high-valence Zr aggregated outside the glass network, leading to the formation of nanocrystals. Raman spectroscopy analysis of samples at different stages of crystallization revealed that during spinel precipitation, the Q3 and Q4 structural units in the glass network increased significantly, along with an increase in the number of bridging oxygens. Highly coordinated Al originally present in the network mainly participated in spinel nucleation, effectively suppressing the subsequent formation of LixAlxSi1−xO2, which eventually resulted in the successful preparation of glass-ceramics with (Zn, Mg)Al2O4 and ZrO2 as the main crystalline phases. The grains in this glass-ceramic are all nanocrystals. Its Vickers hardness and flexural strength can reach up to 875 Hv and 350 MPa, respectively, while the visible light transmittance of the glass-ceramic reaches 81.5%. This material shows potential for applications in touchscreen protection, aircraft and high-speed train windshields, and related fields. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

23 pages, 6000 KB  
Article
Performance Analysis of Stainless Steel Fiber Recycled Aggregate Concrete Under Dry and Wet Cycles Based on Response Surface Methodology
by Chuheng Zhong, Changlong Chen, Shuai Wang, Jianan Shi, Weiqi Mao, Sijia Xing, Jinhui Chen, Yuan Xiao and Jinzhi Zhou
Coatings 2025, 15(9), 1100; https://doi.org/10.3390/coatings15091100 - 19 Sep 2025
Viewed by 240
Abstract
Recycled aggregate concrete refers to concrete made by using recycled aggregates produced from construction waste to replace natural aggregates. The performance of recycled aggregate concrete is extremely unstable. Internal factors such as water–cement ratio, porosity, and the properties of recycled aggregates, as well [...] Read more.
Recycled aggregate concrete refers to concrete made by using recycled aggregates produced from construction waste to replace natural aggregates. The performance of recycled aggregate concrete is extremely unstable. Internal factors such as water–cement ratio, porosity, and the properties of recycled aggregates, as well as external factors like temperature, humidity, environmental erosion, and the addition of improvement materials, may all have an impact on its mechanical properties. The response surface analysis method was employed to investigate the impact of three key factors—the number of dry–wet cycles, the content of stainless steel fibers, and the concentration of Na2SO4—on the mechanical properties of stainless steel fiber recycled aggregate concrete (SSFRAC) under dry–wet cycling conditions in the study. By incorporating stainless steel fibers into the cementitious gel network, SSFRAC is conceptualized as a composite material where the metal fibers are integrated into the gel matrix, forming a hybrid system akin to metallogels. The response models for compressive strength durability coefficient Sc and flexural strength durability coefficient Sf are established using Design-Expert software to evaluate the significance of these factors and their interactions. The version of Design-Expert used in this study is Design Expert 13.0. The results demonstrated that both Sc and Sf models exhibit high fitting accuracy, effectively capturing the relationships among the factors. The number of dry–wet cycles exhibit the highest significance, followed by Na2SO4 concentration and stainless steel fiber content. The interaction between dry–wet cycle number and Na2SO4 concentration has a particularly significant impact on Sc. For Sf, stainless steel fiber content is the most significant factor, followed by dry–wet cycle number and Na2SO4 concentration, with the interaction between fiber content and Na2SO4 concentration exerting a notably strong influence. This study highlights the potential of cement-based gels as raw materials for synthesizing functional composite materials, where the incorporation of metal fibers enhances mechanical performance and durability under aggressive environmental conditions. The findings provide insights into the design and optimization of hybrid gel–metal systems for advanced construction applications. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

Back to TopTop