Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = high-pressure isotherms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8156 KiB  
Article
The Development of Ni-Al Aerogel-Based Catalysts via Supercritical CO2 Drying for Photocatalytic CO2 Methanation
by Daniel Estevez, Haritz Etxeberria and Victoria Laura Barrio
Catalysts 2025, 15(7), 686; https://doi.org/10.3390/catal15070686 - 16 Jul 2025
Viewed by 464
Abstract
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a [...] Read more.
The conversion of CO2 into CH4 through the Sabatier reaction is one of the key processes that can reduce CO2 emissions into the atmosphere. This work aims to develop Ni-Al aerogel-based thermo-photocatalysts with large specific surface areas prepared using a sol–gel method and subsequent supercritical drying in CO2. Different Al/Ni molar ratios were selected for the development of the catalysts, characterized using ICP-OES, N2 adsorption–desorption isotherms, XRD, H2-TPR, TEM, UV-Vis DRS, and XPS techniques. Thermo-photocatalytic activity tests were performed in a photoreactor with two different light sources (λ = 365 nm, λ = 470 nm) at a temperature range from 300 °C to 450 °C and a pressure of 10 bar. The catalyst with the highest Ni loading (AG 1/3) produced the best catalytic results, reaching CO2 conversion and CH4 selectivity levels of 82% and 100%, respectively, under visible light at 450 °C. In contrast, the catalysts with the lowest nickel loading produced the lowest results, most likely due to their low amounts of active Ni. These results suggest that supercritical drying is an efficient method for developing active thermo-photocatalysts with high Ni dispersion, suitable for Sabatier reactions under mild reaction conditions. Full article
(This article belongs to the Special Issue Advancements in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

20 pages, 7127 KiB  
Article
Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs
by Mukun Ouyang, Bo Wang, Xinan Yu, Wei Tang, Maonan Yu, Chunli You, Jianghai Yang, Tao Wang and Ze Deng
Processes 2025, 13(7), 2246; https://doi.org/10.3390/pr13072246 - 14 Jul 2025
Viewed by 247
Abstract
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this [...] Read more.
Shale and coal in the transitional marine–continental facies of the Ordos Basin serve as unconventional natural gas reservoirs, with their pore structures controlling gas adsorption characteristics and occurrence states. To quantitatively characterize the pore structure features and differences between these two reservoirs, this study takes the Shanxi Formation shale and coal in the Daning–Jixian area on the eastern margin of the Ordos Basin as examples. Field-emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, low-temperature N2 adsorption, and low-pressure CO2 adsorption experiments were employed to analyze and compare the full-scale pore structures of the shale and coal reservoirs. Combined with methane isothermal adsorption experiments, the gas adsorption capacity and its differences in these reservoirs were investigated. The results indicate that the average total organic carbon (TOC) content of shale is 2.66%, with well-developed organic pores, inorganic pores, and microfractures. Organic pores are the most common, typically occurring densely and in clusters. The average TOC content of coal is 74.22%, with organic gas pores being the dominant pore type, significantly larger in diameter than those in transitional marine–continental facies shale and marine shale. In coal, micropores contribute the most to pore volume, while mesopores and macropores contribute less. In shale, mesopores dominate, followed by micropores, with macropores being underdeveloped. Both coal and shale exhibit a high SSA primarily contributed by micropores, with organic matter serving as the material basis for micropore development. The methane adsorption capacity of coal is 8–29 times higher than that of shale. Coal contains abundant organic micropores, providing a large SSA and numerous adsorption sites for methane, facilitating gas adsorption and storage. This study comprehensively reveals the similarities and differences in pore structures between transitional marine–continental facies shale and coal reservoirs in the Ordos Basin at the microscale, providing a scientific basis for the precise evaluation and development of unconventional oil and gas resources. Full article
Show Figures

Figure 1

26 pages, 5689 KiB  
Article
Insights into the Adsorption of Carbon Dioxide in Zeolites ITQ-29 and 5A Based on Kinetic Measurements and Molecular Simulations
by Magdy Abdelghany Elsayed, Shixue Zhou, Xiaohui Zhao, Gumawa Windu Manggada, Zhongyuan Chen, Fang Wang and Zhijuan Tang
Nanomaterials 2025, 15(14), 1077; https://doi.org/10.3390/nano15141077 - 11 Jul 2025
Viewed by 439
Abstract
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type [...] Read more.
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type zeolites. The CO2 adsorption isotherms measured in zeolite 5A are best described by the Toth model. Thermodynamic analysis indicates that the adsorption process is spontaneous and exothermic, with an enthalpy change of −44.04 kJ/mol, an entropy change of −115.23 J/(mol·K), and Gibbs free energy values ranging from −9.68 to −1.03 kJ/mol over the temperature range of 298–373 K. The isosteric heat of CO2 adsorption decreases from 40.35 to 21.75 kJ/mol with increasing coverage, reflecting heterogeneous interactions at Ca2+ and Na+ sites. The adsorption kinetics follow a pseudo-first-order model, with an activation energy of 2.24 kJ/mol, confirming a physisorption mechanism. The intraparticle diffusion model indicates that internal diffusion is the rate-limiting step, supported by a significant reduction in the diffusion rate. The DFT calculations demonstrated that CO2 exhibited a −35 kJ/mol more negative adsorption energy in zeolite 5A than in zeolite ITQ-29, attributable to strong interactions with Ca2+/Na+ cations in 5A that were absent in the pure silica ITQ-29 framework. The molecular dynamics simulations based on molecular force fields indicate that CO2 diffuses more rapidly in ITQ-29, with a diffusion coefficient measuring 2.54 × 10−9 m2/s at 298 K, whereas it was 1.02 × 10−9 m2/s in zeolite 5A under identical conditions. The activation energy for molecular diffusion reaches 5.54 kJ/mol in zeolite 5A, exceeding the 4.12 kJ/mol value in ITQ-29 by 33%, which accounts for the slower diffusion kinetics in zeolite 5A. There is good agreement between experimental measurements and molecular simulation results for zeolite 5A across the studied temperature and pressure ranges. This confirms the accuracy and reliability of the selected simulation parameters and allows for the study of zeolite ITQ under similar simulation conditions. This research provides insights into CO2 adsorption energetics and diffusion within LTA-type zeolite frameworks, supporting the rational design of high-performance adsorbents for industrial gas separation. Full article
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
CO2 Sequestration Potential Competitive with H2O and N2 in Abandoned Coal Mines Based on Molecular Modeling
by Tianyang Liu, Yun Li, Yaxuan Hu, Hezhao Li, Binghe Chen, Qixu Zhang, Qiufeng Xu and Yong Li
Processes 2025, 13(7), 2123; https://doi.org/10.3390/pr13072123 - 3 Jul 2025
Viewed by 351
Abstract
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of [...] Read more.
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of coal mine waste gas components (CO2, H2O, N2) under varying pressure levels and gas molar ratios at 353.15 K. We evaluated the adsorption capacity and selectivity for both single-component and multi-component gases, quantifying adsorption interactions through adsorption heat, interaction energy, and energy distribution. The simulation results revealed that the contribution of the three gases to the total adsorption amount followed the order: H2O > CO2 > N2. The selective adsorption coefficient of a gas exhibits an inverse correlation with its molar volume ratio. Isothermal heat adsorption of gases in coal was positive, decreasing sharply with increasing pressure before leveling off. Electrostatic interactions dominated CO2 and H2O adsorption, while van der Waals forces governed N2 adsorption. As the gas mixture complexity increased, the overlap of energy distribution curves pronounced, highlighting competitive adsorption behavior. These findings offer a theoretical foundation for optimizing coal mine waste gas treatment and CO2 sequestration technologies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 8674 KiB  
Article
Characterization of Matrix Pore Structure of a Deep Coal-Rock Gas Reservoir in the Benxi Formation, NQ Block, ED Basin
by Guangfeng Liu, Dianyu Wang, Xiang Peng, Qingjiu Zhang, Bofeng Liu, Zhoujun Luo, Zeyu Zhang and Daoyong Yang
Eng 2025, 6(7), 142; https://doi.org/10.3390/eng6070142 - 30 Jun 2025
Viewed by 281
Abstract
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as [...] Read more.
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as well as by measuring vitrinite reflectance and maceral components. Additionally, physisorption and high-pressure mercury injection (HPMI) tests were conducted to quantitatively characterize the nano- to micron-scale pores in the DCR gas reservoir at multiple scales. The DCR in the NQ Block is predominantly composed of vitrinite, accounting for approximately 77.75%, followed by inertinite. The pore space is predominantly characterized by cellular pores, but porosity development is relatively limited as most of such pores are extensively filled with clay minerals. The isothermal adsorption curves of CO2 and N2 in the NQ Block and the DJ Block exhibit very similar variation patterns. The pore types and morphologies of the DCR reservoir are relatively consistent, with a significant development of nanoscale pores in both blocks. Notably, micropore metrics per unit mass (pore volume (PV): 0.0242 cm3/g; and specific surface area (SSA): 77.7545 m2/g) indicate 50% lower gas adsorption potential in the DJ Block. In contrast, the PV and SSA of the mesopores per unit mass in the NQ Block are relatively consistent with those in the DJ and SF Blocks. Additionally, the peak mercury intake in the NQ Block occurs within the pore diameter < 20 nm, with nearly 60% of the mercury beginning to enter in large quantities only when the pore size exceeds 20 nm. This indicates that nanoscale pores are predominantly developed in the DCR of the NQ block, which aligns with the findings from physical adsorption experiments and SEM analyses. Overall, the development characteristics of multi-scale pores in the DCR formations of the NQ Block and the eastern part of the Basin are relatively similar, with both total PV and total SSA showing an L-shaped distribution. Due to the disparity in micropore SSA, however, the total SSA of the DJ Block is approximately twice that of the NQ Block. This discovery has established a robust foundation for the subsequent exploitation of natural gas resources in DCR formations within the NQ Block. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 4522 KiB  
Article
A Novel Adaptive Transient Model of Gas Invasion Risk Management While Drilling
by Yuqiang Zhang, Xuezhe Yao, Wenping Zhang and Zhaopeng Zhu
Appl. Sci. 2025, 15(13), 7256; https://doi.org/10.3390/app15137256 - 27 Jun 2025
Viewed by 223
Abstract
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In [...] Read more.
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In response to the problems of low management efficiency and large gas kick by traditional gas invasion treatment methods, this paper respectively established and compared three intelligent control models for bottom hole pressure (BHP) based on a PID controller, a fuzzy PID controller, and a fuzzy neural network PID controller based on the non-isothermal gas–liquid–solid three-phase transient flow heat transfer model in the annulus. The results show that compared with the PID controller and the fuzzy PID controller, the fuzzy neural network PID controller can adjust the control parameters adaptively and optimize the control rules in real-time; the efficiency of the fuzzy neural network PID controller to deal with a gas kick is improved by 45%, and the gas kick volume in the process of gas kick is reduced by 63.12%. The principal scientific novelty of this study lies in the integration of a fuzzy neural network PID controller with a non-isothermal three-phase flow model, enabling adaptive and robust bottom hole pressure regulation under complex gas invasion conditions, which is of great significance for reducing drilling risks and ensuring safe and efficient drilling. Full article
(This article belongs to the Special Issue Development and Application of Intelligent Drilling Technology)
Show Figures

Figure 1

28 pages, 2556 KiB  
Article
Evaluation of the Potential of Metal–Organic Compounds ZIF-8 and F300 in a Membrane Filtration–Adsorption Process for the Removal of Antibiotics from Water
by Daniel Polak, Szymon Kamocki and Maciej Szwast
Antibiotics 2025, 14(6), 619; https://doi.org/10.3390/antibiotics14060619 - 18 Jun 2025
Viewed by 443
Abstract
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. [...] Read more.
Background/Objectives: Antibiotic contamination in water sources is a growing global concern, contributing to environmental degradation and the proliferation of antimicrobial resistance. Traditional treatment methods, such as advanced oxidation or high-pressure membrane processes, are often energy-intensive and economically unsustainable for large-scale or decentralized applications. This study explores the potential of two cost-effective, commercially available metal–organic frameworks (MOFs), ZIF-8 and F300, to improve the performance of membrane-based filtration–adsorption systems for removing tetracycline and sulfadiazine from water. Methods: Batch adsorption experiments were performed to evaluate the uptake capacities, kinetics, and isotherms of both MOFs toward the selected antibiotics. The membranes were modified using a low-cost silane-assisted deposition of MOF particles and tested in a microfiltration system. Removal efficiencies and water permeability were assessed and kinetic and isotherm models were applied to understand the adsorption mechanisms. Results: ZIF-8 showed superior adsorption performance, with maximum capacities of 442.2 mg/g for tetracycline and 219.3 mg/g for sulfadiazine. F300 was effective only for tetracycline. Membranes modified with ZIF-8 improved pharmaceutical removal by 187% (tetracycline) and 224% (sulfadiazine) compared to unmodified membranes. Although permeability decreased due to increased hydrophobicity, the materials and processes remained economically favorable. Conclusions: This study demonstrates that MOF-modified ceramic membranes, particularly those incorporating ZIF-8, offer a low-cost, scalable, and energy-efficient alternative for pharmaceutical removal from water. The approach combines strong environmental impact with economic viability, making it attractive for broader implementation in water treatment systems. Full article
Show Figures

Graphical abstract

18 pages, 2961 KiB  
Article
A Novel Isothermal Compressed Air Energy Storage System Based on Cooperative Operation of Two-Stage Liquid Piston Units
by Yan Cui, Tong Jiang and Hongfei Hou
Energies 2025, 18(12), 3184; https://doi.org/10.3390/en18123184 - 17 Jun 2025
Viewed by 375
Abstract
The transition toward a renewable-based energy structure has significantly accelerated the advancement of energy storage technologies. Compressed air energy storage (CAES) is regarded as a highly promising long-duration energy storage solution due to the advantages of its large scale and long service life. [...] Read more.
The transition toward a renewable-based energy structure has significantly accelerated the advancement of energy storage technologies. Compressed air energy storage (CAES) is regarded as a highly promising long-duration energy storage solution due to the advantages of its large scale and long service life. However, the efficiency of conventional compressed air energy storage (CAES) systems remains limited due to the inadequate utilization of thermal energy. Isothermal compressed CAES (ICAES) technology, based on liquid pistons, can overcome the efficiency bottleneck by enabling temperature control during air compression. However, the operation of liquid pistons under high-pressure storage conditions remains a challenge because of the high compression ratio. To enhance the utilization rate of the two-stage liquid piston unit by using the synchronous operations of compression and discharge processes, this paper proposes a coordinated operation scheme. Then, a multi-stage ICAES system under constant-pressure air storage is proposed. Mathematical models and energy efficiency analysis methods of the multi-stage ICAES system are also established. Finally, the operational characteristics are analyzed in combination with the ICAES at 200 kWh. The results show that the proposed system can achieve an overall efficiency of 68.0%, under 85% and 90% efficiencies for low-pressure and linear equipment, respectively. The coordinated operation of the two-stage liquid piston unit can be further extended to multi-stage operations, demonstrating broad application prospects in ICAES systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 8252 KiB  
Article
A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston
by Yan Cui, Tong Jiang and Zhengda Chen
Energies 2025, 18(12), 3178; https://doi.org/10.3390/en18123178 - 17 Jun 2025
Viewed by 373
Abstract
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage [...] Read more.
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage (ICAES) systems have attracted significant research attention due to their elimination of requirements for high-temperature storage chambers and high-temperature compressors. Implementing constant-pressure operation in air storage reservoirs not only enhances energy storage density but also improves system safety. However, existing constant-pressure air storage methodologies necessitate supplementary infrastructure, such as high-pressure water reservoirs or elevated hydraulic columns, thereby escalating capital expenditures. This study introduces a novel constant-pressure air storage strategy for ICAES systems utilizing a linear-driven liquid piston mechanism. The proposed approach achieves constant-pressure air storage through the dual-mode operation strategies of buffer tanks (CBA and CBP modes) and hydraulic cylinders (CPP and CPW modes), eliminating the requirement for an auxiliary high-pressure apparatus or extensive civil engineering modifications. A prototype two-stage constant-pressure ICAES architecture was proposed, integrating low-pressure equipment with liquid pistons and providing detailed operational processes for preconditioning, energy storage, and power generation. A comprehensive mathematical model of the system is developed and validated through process simulation and performance characterization of a 100 kWh capacity system. It demonstrates that under operational conditions of 1 MPa of low pressure and 5 MPa of storage pressure, the system achieves an efficiency of 74.0% when the low-pressure equipment and liquid piston exhibit efficiencies of 85% and 90%, respectively. Furthermore, parametric analysis reveals a negative correlation between system efficiency and low-pressure parameters. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

19 pages, 3527 KiB  
Article
One-Step Synthesis of In Situ Sulfur-Doped Porous Carbons for Efficient CO2 Adsorption
by Jiang Guo, Yun-Peng Ma, Wen-Jun Wu, Xue-Fang Cao and Yu-Ping Fu
Sustainability 2025, 17(11), 4952; https://doi.org/10.3390/su17114952 - 28 May 2025
Viewed by 538
Abstract
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, [...] Read more.
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, and 900 °C) to optimize their CO2 capture performance. The surface physicochemical structural properties of these porous carbons were characterized by applying a Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results show that the SBET of sample SCC-800-3 is as high as 2209 m2/g, the CO2 adsorption capacity of sample SCC-700-2 at normal temperature and pressure reaches 3.46 mmol/g, and the CO2/N2 selectivity of sample SCC-700-1 reaches 24. The synergistic effect of moderate activation conditions ensures optimal pore evolution without compromising sulfur species retention. Furthermore, these porous carbons also demonstrate excellent cycling stability and thermal stability. The fitting of the adsorption isotherm model for all samples were further conducted. Adsorption isotherm modeling demonstrated superior fitting accuracy with the dual-parameter Freundlich and tri-parametric Redlich–Peterson formulations across all samples, indicating that the CO2 capture by high-sulfur coal-based porous carbons belongs to multilayer adsorption and the carbon surface is heterogeneous. The CO2 adsorption on porous carbon exhibits spontaneous, exothermic behavior according to the thermodynamic data. These findings confirm the great potential of high-sulfur coal-based porous carbons on the capture of CO2. The presenting research provides a strategy that leverages the synergistic effect of in situ sulfur doping and milder activation conditions, achieving the high-efficiency utilization of high-sulfur coal resources and developing low-cost CO2 capture materials. Full article
(This article belongs to the Special Issue CO2 Capture and Utilization: Sustainable Environment)
Show Figures

Figure 1

18 pages, 4412 KiB  
Article
Pore Structure and Its Controlling Factors of Cambrian Highly Over-Mature Marine Shales in the Upper Yangtze Block, SW China
by Dadong Liu, Mingyang Xu, Hui Chen, Yi Chen, Xia Feng, Zhenxue Jiang, Qingqing Fan, Li Liu and Wei Du
J. Mar. Sci. Eng. 2025, 13(5), 1002; https://doi.org/10.3390/jmse13051002 - 21 May 2025
Viewed by 425
Abstract
Highly over-mature marine shales are distributed worldwide with substantial resource potential, yet their pore structure characteristics and controlling mechanisms remain poorly understood, hindering accurate shale gas resource prediction and efficient development. This study focuses on the Cambrian Niutitang Formation shales in the Upper [...] Read more.
Highly over-mature marine shales are distributed worldwide with substantial resource potential, yet their pore structure characteristics and controlling mechanisms remain poorly understood, hindering accurate shale gas resource prediction and efficient development. This study focuses on the Cambrian Niutitang Formation shales in the Upper Yangtze region of South China. To decipher the multiscale pore network architecture and its genetic constraints, we employ scanning electron microscopy (SEM) pore extraction and fluid intrusion methods (CO2 and N2 adsorption, and high-pressure mercury intrusion porosimetry) to systematically characterize pore structures in these reservoirs. The results demonstrate that the shales exhibit high TOC contents (average 4.78%) and high thermal maturity (average Ro 3.64%). Three dominant pore types were identified: organic pores, intragranular pores, and intergranular pores. Organic pores are sparsely developed with diameters predominantly below 50 nm, displaying honeycomb, slit-like, or linear morphologies. Intragranular pores are primarily feldspar dissolution voids, while intergranular pores exhibit triangular or polygonal shapes with larger particle sizes. CO2 adsorption isotherms (Type I) and low-temperature N2 adsorption curves (H3-H4 hysteresis) indicate wedge-shaped and slit-like pores, with pore size distributions concentrated in the 0.5–50 nm range, showing strong heterogeneity. Pore structure shows weak correlations with TOC and quartz content but a strong correlation with feldspar abundance. This pattern arises from hydrocarbon generation exhaustion and graphitization-enhanced organic pore collapse under high compaction stress, which reduces pore preservation capacity. The aulacogen tectonic setting engenders proximal sediment provenance regimes that preferentially preserve labile minerals such as feldspars. This geological configuration establishes optimal diagenetic conditions for the subsequent development of meso- and macro-scale of dissolution pores. Our findings demonstrate that feldspar-rich shales, formed in a proximal depositional system with well-developed inorganic pores, serve as favorable reservoirs for the exploration of highly over-mature marine shale gas. Full article
Show Figures

Figure 1

20 pages, 2596 KiB  
Article
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
by Major Melusi Mabuza and Mandlenkosi George Robert Mahlobo
Energies 2025, 18(10), 2646; https://doi.org/10.3390/en18102646 - 20 May 2025
Viewed by 685
Abstract
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption [...] Read more.
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption equilibria under in situ unmineable coal reservoir conditions. This paper presents novel findings on the study of the equilibrium adsorption of CO2 on two South African coals measured at four temperatures between 30 and 60 °C and pressures up to 9.0 MPa using the volumetric technique. Additionally, the sorption mechanism and thermodynamic nature of the process were studied by fitting the experimental data into Langmuir–Freundlich (Sips), Tóth, and Dubinin–Astakhov (DA) isotherm models, and the Clausius–Clapeyron equation. The findings indicate that the sorption process is highly exothermic, as presented by a negative temperature effect, with the maximum working capacity estimated to range between 3.46 and 4.16 mmol/g, which is also rank- and maceral composition-dependent, with high-rank vitrinite-rich coal yielding more sorption capacity than low-rank inertinite-rich coal. The experimental data fit well in Sips and Tóth models, confirming their applicability in describing the CO2 sorption behaviour of the coals under the considered conditions. The isosteric heat of adsorption varied from 7.518 to 37.408 kJ/mol for adsorbate loading ranging from 0.4 to 3.6 mmol/g. Overall, the coals studied demonstrate well-developed sorption properties that characteristically make them viable candidates for CO2 sequestration applications for environmental sustainability. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

22 pages, 3818 KiB  
Article
Application of Machine Learning Algorithms to Predict Gas Sorption Capacity in Heterogeneous Porous Material
by Tasbiha Ibad, Syed Muhammad Ibad, Haylay Tsegab and Rabeea Jaffari
Resources 2025, 14(5), 80; https://doi.org/10.3390/resources14050080 - 16 May 2025
Viewed by 808
Abstract
Shale gas is a clean and effective energy source that plays a big part in the transition from high-carbon to low-carbon energy, serving as a link for the growth of low-carbon energy in the future. Since shale rock is a heterogeneous porous material, [...] Read more.
Shale gas is a clean and effective energy source that plays a big part in the transition from high-carbon to low-carbon energy, serving as a link for the growth of low-carbon energy in the future. Since shale rock is a heterogeneous porous material, the best production strategy is determined by a precise assessment of geological gas-in-place. Therefore, the economic and technical foresight of the production operations depends on the estimation of the adsorbed gas amount in shale resources. The isotherm curves of shale gas derived in this study were classified as type 1 isotherms, which indicates the presence of micropores in these samples. In this work, XGBoost (extreme gradient boosting) and ANN (artificial neural network) optimized with ABC (artificial bee colony) and PSO (particle swarm optimization) have been proposed to learn and then predict the methane sorption capacity (MSC) in shale based on total organic carbon (TOC), temperature, pressure, and moisture as input variables, with the gas adsorption amount of shale as the output. Statistical and graphical methods were used to compare the experimental results with the expected values. By comparison, the current work’s ANN-ABC and ANN-PSO models outperform all previous studies with higher R2 values (0.9913 and 0.9954) and lower RMSE scores (0.0457 and 0.0420), respectively, indicating improved predictive accuracy and generalization ability. The findings demonstrate that, in comparison to earlier models, the suggested models provide an exceptional prediction of the adsorbed gas amount in a heterogeneous porous medium. With additional data available, it may be easily updated for wider applications. Overall, this paper shows that machine learning can be used to forecast shale gas adsorption, and a well-trained model may be incorporated into a large numerical framework to optimize shale gas production curves. Full article
Show Figures

Figure 1

14 pages, 8555 KiB  
Article
Experimental Liquid Densities of Red Palm Oil at Pressures up to 150 MPa from (312 to 352) K and Dynamic Viscosities at 0.1 MPa from (293 to 353) K
by Jia Lin Lee, Gun Hean Chong, Yuya Hiraga, Yoshiyuki Sato, Masaki Ota and Richard Lee Smith
Liquids 2025, 5(2), 13; https://doi.org/10.3390/liquids5020013 - 13 May 2025
Viewed by 809
Abstract
Density and viscosity are fundamental properties necessary for processing of red palm oil (RPO). The main fatty acid constituents of RPO were determined to be palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). Rheology measurements [...] Read more.
Density and viscosity are fundamental properties necessary for processing of red palm oil (RPO). The main fatty acid constituents of RPO were determined to be palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). Rheology measurements confirmed that RPO behaved as a Newtonian fluid. Viscosities and atmospheric densities of RPO were measured at 0.1 MPa and (293 K to 413) K and correlated with the Rodenbush model (0.05% deviation). Dynamic viscosities of RPO were correlated with the Vogel–Fulcher–Tammann model (0.06% deviation) and Doolittle free volume model (0.04% deviation). High-pressure densities of RPO were measured at (10 to 150) MPa and (312 to 352) K. The Tait equation could correlate the high-pressure densities of RPO to within 0.021% deviation and was used to estimate the thermal expansion as 5.1 × 10−4 K−1 (at 312 K, 150 MPa) to 4.8 × 10−4 K−1 (at 352 K, 150 MPa) and isothermal compressibility as 7.3 × 10−4 MPa−1 (at 352 K, 0.1 MPa) to 3.5 × 10−4 MPa−1 (at 352 K, 150 MPa). Parameters for the perturbed-chain statistical associating fluid theory equation of state were determined and gave an average of 0.143% deviation in density. The data and equations developed should be useful in high-pressure food processing as well as in applications considering vegetable oils as heat transfer fluids or as lubricants. Full article
Show Figures

Figure 1

11 pages, 458 KiB  
Article
A Numerical Investigation of Non-Ideal Gas Effects on the Saturation Pressure of Water Under High Pressure and Temperature
by Roshan Mathew Tom, Sukumar Rajauria, Qing Dai and Qilong Cheng
Lubricants 2025, 13(5), 197; https://doi.org/10.3390/lubricants13050197 - 27 Apr 2025
Viewed by 506
Abstract
A typical head–disk interface of hard drives can feature pressures exceeding 50 atmospheres, where the non-ideal gas effects can play an important role. One possible consequence is a change in the rate of water evaporation from the disk. This report describes a semi-analytical [...] Read more.
A typical head–disk interface of hard drives can feature pressures exceeding 50 atmospheres, where the non-ideal gas effects can play an important role. One possible consequence is a change in the rate of water evaporation from the disk. This report describes a semi-analytical procedure that employs the concept of fugacity to investigate the non-ideal gas effects on the saturation pressure of water at an elevated temperature and pressure. A vapor–liquid equilibrium equation is solved to derive the saturation pressure. The results show a deviation from the ideal gas law, which is further examined through saturation pressure isotherms. At areas of low temperature and high pressure, lighter gases such as helium show about a 10% deviation from the ideal gas law, whereas heavier gases such as nitrogen deviate by up to 100%. As temperature increases, the differences between the gases decrease. Full article
Show Figures

Figure 1

Back to TopTop