Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = high-power amplifier (HPA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5787 KB  
Review
A Review of Ku-Band GaN HEMT Power Amplifiers Development
by Jihoon Kim
Micromachines 2024, 15(11), 1381; https://doi.org/10.3390/mi15111381 - 15 Nov 2024
Cited by 9 | Viewed by 5605
Abstract
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is [...] Read more.
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is growing, driven by the global expansion of high-speed data communication and enhanced national security requirements. First, we compare the main GaN HEMT process technologies employed in Ku-band HPA development, categorizing the HPAs into monolithic microwave integrated circuits (MMICs) and internally matched power amplifier modules (IM-PAMs) and examining their respective characteristics. Then, by reviewing the literature, we explore design topologies, major issues like oscillation prevention and bias circuits, and heat sink technologies for thermal management. Our findings indicate that silicon carbide (SiC) substrates with gate lengths of 0.25 μm and 0.15 μm are predominantly used, with ongoing developments enabling MMICs and IM-PAMs to achieve up to 100 W output power and 30% power-added efficiency. Notably, the performance of MMIC power amplifiers is advancing more rapidly than that of IM-PAMs, highlighting MMICs as a promising direction for achieving higher efficiency and integration in future Ku-band applications. This paper can provide insights into the overall key technologies for Ku-band GaN HPA design and future development directions. Full article
Show Figures

Figure 1

21 pages, 3979 KB  
Article
Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier
by Tommaso Cappello, Sarmad Ozan, Andy Tucker, Peter Krier, Tudor Williams and Kevin Morris
Electronics 2024, 13(19), 3818; https://doi.org/10.3390/electronics13193818 - 27 Sep 2024
Cited by 4 | Viewed by 2491
Abstract
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different [...] Read more.
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different phase relationships between the linear and nonlinear branches, suggesting independent gain and phase expansion characteristics with this topology. This model is used to assess the impact of diode resistance, capacitance, and ideality factors on the APD characteristics. This feature is showcased with two similar GaAs diodes to find the best fit for the considered HPA. The selected diode is characterized and modeled between 1 and 26.5 GHz. A comprehensive APD design and simulation workflow is reported. Before fabrication, the simulated APD is evaluated with the measured HPA to verify linearity improvements. The APD prototype achieves a large-signal bandwidth of 6 GHz with 3 dB gain expansion and 8° phase rotation. This linearizer is demonstrated with a 17–21 GHz GaN HPA with 41 dBm output power and 35% efficiency. Using a wideband 750 MHz signal, this APD improves the noise–power ratio (NPR) by 6.5–8.2 dB over the whole HPA bandwidth. Next, the HPA output power is swept to compare APD vs. power backoff for the same NPR. APD improves the HPA output power by 1–2 W and efficiency by approximately 5–9% at 19 GHz. This efficiency improvement decreases by only 1–2% when including the APD post-amplifier consumption, thus suggesting overall efficiency and output power improvements with APD at K-band frequencies. Full article
Show Figures

Figure 1

19 pages, 13118 KB  
Article
Millimeter-Wave GaN High-Power Amplifier MMIC Design Guideline Considering a Source via Effect
by Jihoon Kim, Seoungyoon Han, Bo-Bae Kim, Mun-Kyo Lee and Bok-Hyung Lee
Electronics 2024, 13(13), 2616; https://doi.org/10.3390/electronics13132616 - 3 Jul 2024
Cited by 1 | Viewed by 5042
Abstract
A millimeter-wave (mmWave) gallium nitride (GaN) high-power amplifier (HPA) monolithic microwave-integrated circuit (MMIC) was implemented, considering a source via effect. In this paper, we introduce guidelines for designing GaN HPA MMICs, from device sizing to meeting high-power specifications, power matching considering source via [...] Read more.
A millimeter-wave (mmWave) gallium nitride (GaN) high-power amplifier (HPA) monolithic microwave-integrated circuit (MMIC) was implemented, considering a source via effect. In this paper, we introduce guidelines for designing GaN HPA MMICs, from device sizing to meeting high-power specifications, power matching considering source via effects, schematic design of three-stage amplifier structures, and electromagnetic (EM) simulation. Based on the results of load pull simulation and small-signal maximum stable gain (MSG) simulation, the GaN high-electron-mobility transistor (HEMT) size was selected to be 8 × 70 μm. However, since the source via model provided by the foundry was significantly different from the EM results, it was necessary to readjust the power matching considering this. Additionally, when selecting the source via size, the larger the size, the easier the matching, but since the layout of the peripheral bias circuit is not possible, a compromise was required considering the actual layout. To prevent in-band oscillation, an RC parallel circuit was added to the input matching circuit, and low-frequency oscillation was solved by adding a gate resistor on the PCB module. The proposed PA was fabricated with a commercial 0.1 μm GaN HEMT MMIC process. It exhibited 38.56 to 39.71 dBm output power (Pout), 14.2 to 16.7 dB linear gain, and 14.1% to 18.2% power-added efficiency (PAE) in the upper Ka band. The fabricated GaN power amplifier MMIC shows competitive Pout in the upper Ka band above 33 GHz. Full article
(This article belongs to the Special Issue Challenges, Innovation and Future Perspectives of GaN Technology)
Show Figures

Figure 1

27 pages, 46623 KB  
Article
Stability, Mounting, and Measurement Considerations for High-Power GaN MMIC Amplifiers
by Vicente González-Posadas, José Luis Jiménez-Martín, Angel Parra-Cerrada, David Espinosa Adams and Wilmar Hernandez
Sensors 2023, 23(23), 9602; https://doi.org/10.3390/s23239602 - 4 Dec 2023
Cited by 2 | Viewed by 4998
Abstract
In this paper, the precise design of a high-power amplifier (HPA) is shown, along with the problems associated with the stability of “on-wafer” measurements. Here, techniques to predict possible oscillations are discussed to ensure the stability of a monolithic microwave-integrated circuit (MMIC). In [...] Read more.
In this paper, the precise design of a high-power amplifier (HPA) is shown, along with the problems associated with the stability of “on-wafer” measurements. Here, techniques to predict possible oscillations are discussed to ensure the stability of a monolithic microwave-integrated circuit (MMIC). In addition, a deep reflection is made on the instabilities that occur when measuring both on wafer and using a mounted chip. Stability techniques are used as tools to characterize measurement results. Both a precise design and instabilities are shown through the design of a three-stage X-band HPA in gallium nitride (GaN) from the WIN Semiconductors Corp. foundry. As a result, satisfactory performance was obtained, achieving a maximum output power equal to 42 dBm and power-added efficiency of 32% at a 20 V drain bias. In addition to identifying critical points in the design or measurement of the HPA, this research shows that the stability of the amplifier can be verified through a simple analysis and that instabilities are often linked to errors in the measurement process or in the characterization of the measurement process. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

11 pages, 459 KB  
Proceeding Paper
Galileo Performance Improvements Employing Meta-Signals—Robustness Analysis against Payload and Receiver Distortions
by Florian C. Beck, Christoph Enneking, Steffen Thölert and Michael Meurer
Eng. Proc. 2023, 54(1), 4; https://doi.org/10.3390/ENC2023-15472 - 29 Oct 2023
Cited by 3 | Viewed by 1295
Abstract
A concept that has been explored as a means to obtain decimeter-level positioning accuracy with global navigation satellite systems (GNSSs) is meta-signal processing (MSP), which treats several stand-alone GNSS signals as a single composite wideband signal. BeiDou Navigation Satellite System (BDS) III already [...] Read more.
A concept that has been explored as a means to obtain decimeter-level positioning accuracy with global navigation satellite systems (GNSSs) is meta-signal processing (MSP), which treats several stand-alone GNSS signals as a single composite wideband signal. BeiDou Navigation Satellite System (BDS) III already offers with the B1I+B1C signal a meta-signal, while the forthcoming Galileo (GAL) E1D could be combined with E1B or E1C if the E1D signal is broadcast with a frequency offset to the L1/E1 carrier frequency. This would boost the ranging performance of GAL open service (OS) in the upper L-band through MSP. However, the cross-correlation function (CCF) of meta-signals contain numerous high side-maxima which can, when wrongly identified as the main peak, lead to significant pseudo-range errors of multiple meters. The probability of such a false lock is known to increase with decreasing signal-to-noise ratios but can significantly increase even further due to imperfections in the analog hardware components (e.g., linear and non-linear effects of a high-power amplifier (HPA), an output multiplexer (OMUX), a transmitter filter, and a front-end receiver), as these can distort the CCF. One remaining question is whether meta-signals are a well-suited approach to reliably increase ranging performance in the presence of payload and receiver distortions. This study presents the first systematic assessment of the robustness of several potential meta-signal options enabled by a forthcoming GAL E1D signal for different levels of distortion. The results show significant performance gains but also indicate constraints regarding the choice of signals when considering MSP under the influence of distortions. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

13 pages, 4508 KB  
Article
A 32-GHz Eight-Way Power Amplifier MMIC in 150 nm GaN HEMT Technology
by Hyeong-Geun Park, Van-Son Trinh, Mun-Kyo Lee, Bok-Hyung Lee, Kyoung-Il Na and Jung-Dong Park
Electronics 2023, 12(15), 3278; https://doi.org/10.3390/electronics12153278 - 30 Jul 2023
Cited by 1 | Viewed by 3571
Abstract
This paper presents a 32 GHz high-power amplifier (HPA) with a design strategy to achieve high-power output with reliable operation for Ka-band deep space satellite communication in 150 nm GaN HEMT technology. The presented Ka-band HPA employs a cascaded two-stage common source amplifier [...] Read more.
This paper presents a 32 GHz high-power amplifier (HPA) with a design strategy to achieve high-power output with reliable operation for Ka-band deep space satellite communication in 150 nm GaN HEMT technology. The presented Ka-band HPA employs a cascaded two-stage common source amplifier topology, and the output stage comprises an eight-way power combining network in the current mode. The interstage matching network is designed with the bandpass configuration utilizing capacitors and transmission lines to provide better stability at the low-frequency regime. The implemented Ka-band HPA achieved a power gain of 7.3 dB at the input level with the maximum PAE at 32 GHz, and the 3 dB gain bandwidth was 3.5 GHz (31.3~34.8 GHz). The saturated output power at the peak power-added efficiency (PAE) of 19.3% was 38.2 dBm, and the output 1 dB gain compression point (OP1 dB) was 27.4 dBm in the measurement. The designed HPA consumes an area of 19.35 mm2 including RF pads and DC pads. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

11 pages, 13561 KB  
Communication
A Ku-Band GaN-on-Si MMIC Power Amplifier with an Asymmetrical Output Combiner
by Javier del Pino, Sunil Lalchand Khemchandani, Daniel Mayor-Duarte, Mario San-Miguel-Montesdeoca, Sergio Mateos-Angulo, Francisco de Arriba and María García
Sensors 2023, 23(14), 6377; https://doi.org/10.3390/s23146377 - 13 Jul 2023
Cited by 4 | Viewed by 3961
Abstract
In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by [...] Read more.
In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16–19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 12126 KB  
Article
X-band MMICs for a Low-Cost Radar Transmit/Receive Module in 250 nm GaN HEMT Technology
by Hyeonseok Lee, Hyeong-Geun Park, Van-Du Le, Van-Phu Nguyen, Jeong-Moon Song, Bok-Hyung Lee and Jung-Dong Park
Sensors 2023, 23(10), 4840; https://doi.org/10.3390/s23104840 - 17 May 2023
Cited by 9 | Viewed by 6320
Abstract
This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 μm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive [...] Read more.
This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 μm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

16 pages, 1202 KB  
Article
Next-Generation Hybrid RF Front-End with MoS2-FET Supply Management Circuit, CNT-FET Amplifiers, and Graphene Thin-Film Antennas
by Paolo Crippa, Giorgio Biagetti, Lorenzo Minelli, Claudio Turchetti, Martino Aldrigo, Mircea Dragoman, Davide Mencarelli and Luca Pierantoni
Electronics 2022, 11(22), 3708; https://doi.org/10.3390/electronics11223708 - 12 Nov 2022
Cited by 3 | Viewed by 3374
Abstract
One-dimensional (1D) and two-dimensional (2D) materials represent the emerging technologies for transistor electronics in view of their attractive electrical (high power gain, high cut-off frequency, low power dissipation) and mechanical properties. This work investigates the integration of carbon-nanotube-based field-effect transistors (CNT-FETs) and molybdenum [...] Read more.
One-dimensional (1D) and two-dimensional (2D) materials represent the emerging technologies for transistor electronics in view of their attractive electrical (high power gain, high cut-off frequency, low power dissipation) and mechanical properties. This work investigates the integration of carbon-nanotube-based field-effect transistors (CNT-FETs) and molybdenum disulphide (MoS2)-based FETs with standard CMOS technology for designing a simple analog system integrating a power switching circuit for the supply management of a 10 GHz transmitting/receiving (T/R) module that embeds a low-noise amplifier (LNA) and a high-power amplifier (HPA), both of which loaded by nanocrystalline graphene (NCG)-based patch antennas. Verilog-A models, tuned to the technology that will be used to manufacture the FETs, were implemented to perform electrical simulations of the MoS2 and CNT devices using a commercial integrated circuit software simulator. The obtained simulation results prove the potential of hybrid CNT-MoS2-FET circuits as building blocks for next-generation integrated circuits for radio frequency (RF) applications, such as radars or IoT systems. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

10 pages, 3473 KB  
Article
Advances in Ku-Band GaN Single Chip Front End for Space SARs: From System Specifications to Technology Selection
by Francesco Scappaviva, Gianni Bosi, Andrea Biondi, Sara D’Angelo, Luca Cariani, Valeria Vadalà, Antonio Raffo, Davide Resca, Elisa Cipriani and Giorgio Vannini
Electronics 2022, 11(19), 2998; https://doi.org/10.3390/electronics11192998 - 21 Sep 2022
Cited by 7 | Viewed by 6050
Abstract
In this paper, a single-chip front-end (SCFE) operating in Ku-band (12–17 GHz) is presented. It is designed exploiting a GaN on SiC technology featured by 150 nm gate length provided by UMS foundry. This MMIC integrates high power and low noise amplification functions [...] Read more.
In this paper, a single-chip front-end (SCFE) operating in Ku-band (12–17 GHz) is presented. It is designed exploiting a GaN on SiC technology featured by 150 nm gate length provided by UMS foundry. This MMIC integrates high power and low noise amplification functions enabled by a single-pole double-throw (SPDT) switch, occupying a total area of 20 mm2. The transmitting chain (Tx) presents a 39 dBm output power, a power added efficiency (PAE) higher than 30% and a 22 dB power gain. The receive path (Rx) offers a low noise figure (NF) lower than 2.8 dB with 25 dB of linear gain. The Rx port output power leakage is limited on chip to be below 15 dBm even at high compression levels. Finally, a complete characterization of the SCFE in the Rx and Tx modes is presented, also showing the measurement of the recovery time in the presence of large-signal interferences. Full article
(This article belongs to the Special Issue Power Amplifier for Wireless Communication)
Show Figures

Figure 1

15 pages, 2157 KB  
Article
Multi-Tone Harmonic Balance Optimization for High-Power Amplifiers through Coarse and Fine Models Based on X-Parameters
by Lida Kouhalvandi, Osman Ceylan, Serdar Ozoguz and Ladislau Matekovits
Sensors 2022, 22(11), 4305; https://doi.org/10.3390/s22114305 - 6 Jun 2022
Cited by 2 | Viewed by 3213
Abstract
In this study, we focus on automated optimization design methodologies to concurrently trade off between power gain, output power, efficiency, and linearity specifications in radio frequency (RF) high-power amplifiers (HPAs) through deep neural networks (DNNs). The RF HPAs are highly nonlinear circuits where [...] Read more.
In this study, we focus on automated optimization design methodologies to concurrently trade off between power gain, output power, efficiency, and linearity specifications in radio frequency (RF) high-power amplifiers (HPAs) through deep neural networks (DNNs). The RF HPAs are highly nonlinear circuits where characterizing an accurate and desired amplitude and phase responses to improve the overall performance is not a straightforward process. For this case, we propose a coarse and fine modeling approach based on firstly modeling the involved transistor and then selecting the best configuration of HAP along with optimizing the involved input and output termination networks through DNNs. In the fine phase, we firstly construct the equivalent modeling of the GaN HEMT transistor by using X-parameters. Then in the coarse phase, we utilize hidden layers of the modeled transistor and replace the HPA’s DNN to model the behavior of the selected HPA by using S-parameters. If the suitable accuracy of HPA modeling is not achieved, the hyperparameters of the fine model are improved and re-evaluated in the HPA model. We call the optimization process coarse and fine modeling since the evaluation process is performed from S-parameters to X-parameters. This stage of optimization can ensure modeling the nonlinear HPA design that includes a high number of parameters in an effective way. Furthermore, for accelerating the optimization process, we use the classification DNN for selecting the best topology of HPA for modeling the most suitable configuration at the coarse phase. The proposed modeling strategy results in relatively highly accurate HPA designs that generate post-layouts automatically, where multi-tone harmonic balance specifications are optimized once together without any human interruptions. To validate the modeling approach and optimization process, a 10 W HPA is simulated and measured in the operational frequency band of 1.8 GHz to 2.2 GHz, i.e., the L-band. The measurement results demonstrate a drain efficiency higher than 54% and linear gain performance more than 12.5 dB, with better than 50 dBc adjacent channel power ratio (ACPR) after DPD. Full article
(This article belongs to the Special Issue Micro and Nanodevices for Sensing Technology)
Show Figures

Figure 1

10 pages, 5652 KB  
Article
A Wideband High-Efficiency GaN MMIC Power Amplifier for Sub-6-GHz Applications
by Liulin Hu, Xuejie Liao, Fan Zhang, Haifeng Wu, Shenglin Ma, Qian Lin and Xiaohong Tang
Micromachines 2022, 13(5), 793; https://doi.org/10.3390/mi13050793 - 20 May 2022
Cited by 10 | Viewed by 6264
Abstract
The monolithic microwave integrated circuit (MMIC) power amplifiers serve an essential and critical role in RF transmit/receive (T/R) modules of phased array radar systems, mobile communication systems and satellite systems. Over recent years, there has been an increasing requirement to develop wideband high-efficiency [...] Read more.
The monolithic microwave integrated circuit (MMIC) power amplifiers serve an essential and critical role in RF transmit/receive (T/R) modules of phased array radar systems, mobile communication systems and satellite systems. Over recent years, there has been an increasing requirement to develop wideband high-efficiency MMIC high power amplifiers (HPAs) to accommodate wideband operation and reduce power consumption. This paper presents a wideband high efficiency MMIC HPA for Sub-6-GHz applications using a 0.25-μm gate-length D-mode GaN/SiC high electron mobility transistor (HEMT) process. The amplifier consists of two stages with two HEMT cells for the driver stage and eight HEMT cells for the power stage. To obtain a flat gain while maintaining the wideband characteristic, a gain equalization technique is employed in the inter-stage matching circuit. Meanwhile, a low-loss output matching network is utilized to ensure high efficiency. The fabricated HPA occupies a compact chip area of 14.35 mm2 including testing pads. Over the frequency range of 2–6 GHz, measured results of this HPA show a saturated continuous wave (CW) output power of 44.4–45.2 dBm, a power added efficiency (PAE) of 35.8–51.3%, a small signal gain of 24–25.5 dB, and maximum input and output return losses of 14.5 and 10 dB, respectively. Full article
Show Figures

Figure 1

19 pages, 1230 KB  
Article
Hybrid Energy Efficiency Friendly Frequency Domain TR Algorithm Based on PSO Algorithm Evaluated by Novel Maximizing HPA Efficiency Evaluation Criteria
by Feng Hu, Yuan Lu, Libiao Jin, Jianbo Liu, Zhiping Xia, Guoting Zhang and Jingting Xiao
Energies 2022, 15(3), 917; https://doi.org/10.3390/en15030917 - 27 Jan 2022
Cited by 2 | Viewed by 1843
Abstract
Smart Grids (SGs) expedite secure, large-scale and efficient two-way communication between the power supply and management, but under a sophisticated 5G communication infrastructure, the multi carrier system is the principle system. The high peak-to-average power ratio (PAPR) is one of the significant limitations [...] Read more.
Smart Grids (SGs) expedite secure, large-scale and efficient two-way communication between the power supply and management, but under a sophisticated 5G communication infrastructure, the multi carrier system is the principle system. The high peak-to-average power ratio (PAPR) is one of the significant limitations of the 5G multi carrier (MC) system, as it impedes the efficient design of the 5G analogue front end. Tone reservation (TR) is a highly efficient scheme without signal distortion, which is designed by increasing the freedom in the frequency domain for PAPR reduction. In this paper, a particle swarm optimization (PSO) based TR (PSO-TR) scheme proceeding with an optimal input power back off-modulation error ratio (IBO-MER) convergence criterion is proposed to improve high power amplifier (HPA) efficiency for OFDM systems. A probabilistic analysis of TR predistribution and freedom in the frequency domain, in relationship with the amplitude of its constituent samples, is carried out. This yields the theoretical framework employed in design of the proposed high computing-enhanced solutions. The proposed PSO-TR essentially make the frequency domain distribution and operation itself adaptive, that is, it adjusts to comply with the changing HPA efficiency and redundant cost during application runtime. Full article
Show Figures

Figure 1

15 pages, 1972 KB  
Article
Dimensioning an FPGA for Real-Time Implementation of State of the Art Neural Network-Based HPA Predistorter
by Abdelhamid Louliej, Younes Jabrane, Víctor P. Gil Jiménez and Frédéric Guilloud
Electronics 2021, 10(13), 1538; https://doi.org/10.3390/electronics10131538 - 25 Jun 2021
Cited by 3 | Viewed by 2571
Abstract
Orthogonal Frequency Division Multiplexing (OFDM) is one of the key modulations for current and novel broadband communications standards. For example, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) is an excellent choice for the ECMA-368 Ultra Wideband (UWB) wireless communication standard. Nevertheless, the high Peak [...] Read more.
Orthogonal Frequency Division Multiplexing (OFDM) is one of the key modulations for current and novel broadband communications standards. For example, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) is an excellent choice for the ECMA-368 Ultra Wideband (UWB) wireless communication standard. Nevertheless, the high Peak to Average Power Ratio (PAPR) of MB-OFDM UWB signals reduces the power efficiency of the key element in mobile devices, the High Power Amplifier (HPA), due to non-linear distortion, known as the non-linear saturation of the HPA. In order to deal with this limiting problem, a new and efficient pre-distorter scheme using a Neural Networks (NN) is proposed and also implemented on Field Programmable Gate Array (FPGA). This solution based on the pre-distortion concept of HPA non-linearities offers a good trade-off between complexity and performance. Some tests and validation have been conducted on the two types of HPA: Travelling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA). The results show that the proposed pre-distorter design presents low complexity and low error rate. Indeed, the implemented architecture uses 10% of DSP (Digital Signal Processing) blocks and 1% of LUTs (Look up Table) in case of SSPA, whereas it only uses 1% of LUTs in case of TWTA. In addition, it allows us to conclude that advanced machine learning techniques can be efficiently implemented in hardware with the adequate design. Full article
(This article belongs to the Special Issue Theory and Applications of Fuzzy Systems and Neural Networks)
Show Figures

Figure 1

13 pages, 4513 KB  
Article
Evaluate the Cooling Performance of Transmit/Receive Module Cooling System in Active Electronically Scanned Array Radar
by Jun Su Park, Dong-Jun Shin, Sung-Hwan Yim and Sang-Hyun Kim
Electronics 2021, 10(9), 1044; https://doi.org/10.3390/electronics10091044 - 28 Apr 2021
Cited by 17 | Viewed by 7152
Abstract
The active electronically scanned array (AESA) radar consists of many transmit/receive (T/R) modules and is used to track missiles approaching destroyers and fighters. The performance of the AESA radar depends on the T/R module temperature. The T/R module temperature should be maintained under [...] Read more.
The active electronically scanned array (AESA) radar consists of many transmit/receive (T/R) modules and is used to track missiles approaching destroyers and fighters. The performance of the AESA radar depends on the T/R module temperature. The T/R module temperature should be maintained under 80 °C to guarantee the performance of the AESA radar. In order to match the design requirements of the cooling system of the AESA radar, it is necessary to evaluate the cooling performance according to various operation/installation environments. In this study, computational fluid analysis was performed by changing the number of T/R modules and the coolant mass flow rate to evaluate the cooling performance of the AESA radar coolant channel. The number of T/R modules was changed from 2 to 16, and the number of coolant inlet Re was changed from 277 to 11,116. As a result, it was confirmed that the temperature increased as the number of T/R modules increased. In addition, when the coolant status was laminar flow, it was confirmed that the cooling performance was significantly lowered. Therefore, the coolant status should be transient or turbulence to decrease the temperature of the T/R module. Additionally, the correlation between the arrangement of the T/R module and the cooling flow must be considered to cool the AESA radar. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

Back to TopTop