Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = high-permeability zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 18294 KB  
Article
Influencing Factors of Hydrocarbon Migration and Adjustment at the Edge of a Stable Cratonic Basin: Implications from Fluid Inclusions, Quantitative Fluorescence Techniques, and Geochemical Tracing
by Zhengqi Yang, Xin Cheng, Siqi Ouyang, Zhe Liu, Yuting Cheng, Shuqi Lan, Lei Xue, Ting Zhang and Yiqian Qu
Energies 2026, 19(3), 638; https://doi.org/10.3390/en19030638 - 26 Jan 2026
Abstract
Understanding the mechanisms of hydrocarbon migration, accumulation, and alteration, particularly how evolution controls these processes, is critical for exploring lithologic hydrocarbons in reservoirs. In the complex tectonic settings of the continental margin of the stable North China Craton, there is a significant presence [...] Read more.
Understanding the mechanisms of hydrocarbon migration, accumulation, and alteration, particularly how evolution controls these processes, is critical for exploring lithologic hydrocarbons in reservoirs. In the complex tectonic settings of the continental margin of the stable North China Craton, there is a significant presence of small yet highly prolific hydrocarbon reservoirs. The processes of hydrocarbon migration and accumulation are complex and thus represent an important research focus in geology. This study, based on core, logging, and seismic data and integrating fluid inclusion analysis, quantitative fluorescence techniques, and geochemical experiments, combines the shale smear factor and paleotectonic reconstructions to clarify the hydrocarbon accumulation episodes, migration pathways, and factors controlling reservoir adjustments in the Yanwu area of the Tianhuan Depression in the Ordos Basin, China. The results reveal three types of NE-trending left-lateral strike–slip faults: linear, left-stepping, and right-stepping. Shale Smear Factor (SSF) analysis confirms that these faults exhibit segmented opening behaviors, with SSF > 1.7 identified as the threshold for fault openness. Multiparameter geochemical tracing based on terpanes and steranes shows that lateral migration along fault zones dominates the preferential migration pathways for hydrocarbons. Fluid inclusion thermometry revealed homogenization temperatures within the 100–110 °C and 80–90 °C intervals, while the oil inclusions exhibit blue or blue-and-white fluorescence, reflecting early hydrocarbon charging and late-stage secondary migration. Integrated analysis indicates that during the late Early Cretaceous (105–90 Ma), hydrocarbons were charged upward through open segments of linear strike–slip fault zones in the northern study area, experiencing lateral migration and accumulation along high-permeability sand bodies and unconformities in the shallow strata. Since the Late Cretaceous (65 Ma-present), the regional tectonic framework has evolved from a west–high, east–low to a west–low, east–high configuration, inducing secondary hydrocarbon migration and leading to the remigration or even destruction of early-formed oil reservoirs. This study systematically demonstrates that fault activity and tectonic evolution control the accumulation and distribution of hydrocarbons in the region. These findings provide theoretical insights for hydrocarbon exploration in regions with complex tectonic evolution within stable cratonic basins. Full article
Show Figures

Figure 1

18 pages, 4582 KB  
Article
Distribution Characteristics of Remaining Oil in Fractured–Vuggy Carbonate Reservoirs and EOR Strategies: A Case Study from the Shunbei No. 1 Strike–Slip Fault Zone, Tarim Basin
by Jilong Song, Shan Jiang, Wanjie Cai, Lingyan Luo, Peng Chen and Ziyi Chen
Energies 2026, 19(3), 593; https://doi.org/10.3390/en19030593 - 23 Jan 2026
Viewed by 99
Abstract
A comprehensive study on the distribution characteristics and exploitation strategies of remaining oil was carried out in the Ordovician ultra-deep fault-controlled fractured–vuggy carbonate reservoir within the Shunbei No. 1 strike–slip fault zone. This research addresses challenges such as severe watered-out and gas channeling [...] Read more.
A comprehensive study on the distribution characteristics and exploitation strategies of remaining oil was carried out in the Ordovician ultra-deep fault-controlled fractured–vuggy carbonate reservoir within the Shunbei No. 1 strike–slip fault zone. This research addresses challenges such as severe watered-out and gas channeling encountered during multi-stage development, marking a shift toward a development phase focused on residual oil recovery. By integrating seismic attributes, drilling, logging, and production performance data—and building upon previous methodologies of “hierarchical constraint and genetic modeling”—a three-dimensional geological model was constructed with a five-tiered architecture: strike–slip fault affected zone, fault-controlled unit, cave-like structure, cluster fillings, and fracture zone. Numerical simulations were subsequently performed based on this model. The results demonstrate that the distribution of remaining oil is dominantly controlled by the coupling between key geological factors—including fault kinematics, reservoir architecture formed by karst evolution, and fracture–vug connectivity—and the injection–production well pattern. Three major categories with five sub-types of residual oil distribution patterns were identified: (1) local low permeability, weak hydrodynamics; (2) shielded connectivity pathways; and (3) Well Pattern-Dependent. Accordingly, two types of potential-tapping measures are proposed: improve well control through optimized well placement and sidetrack drilling and reservoir flow field modification via adjusted injection–production parameters and sealing of high-permeability channels. Techniques such as gas (nitrogen) huff-and-puff, gravity-assisted segregation, and injection–production pattern restructuring are recommended to improve reserve control and sweep efficiency, thereby increasing ultimate recovery. This study provides valuable guidance for the efficient development of similar ultra-deep fractured–vuggy carbonate reservoirs. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

22 pages, 4099 KB  
Article
Diagenetic Characteristics and Evolution of Low-Permeability Clastic Reservoirs in the Mesozoic of the Tanhai Zone, Jiyang Depression
by Dongmou Huang, Shaochun Yang, Qunhu Wu, Yanjia Wu, Shilong Ma and Yifan Zhang
Minerals 2026, 16(1), 106; https://doi.org/10.3390/min16010106 - 21 Jan 2026
Viewed by 70
Abstract
In multi-phase tectonic activity areas, complex stratigraphic uplift-subsidence cycles lead to multi-phase, superimposed diagenesis. This obscures the mechanisms of reservoir property evolution and makes predicting diagenetic sweet spots difficult. This study investigates the low-permeability clastic reservoirs in the Mesozoic of the Tanhai area, [...] Read more.
In multi-phase tectonic activity areas, complex stratigraphic uplift-subsidence cycles lead to multi-phase, superimposed diagenesis. This obscures the mechanisms of reservoir property evolution and makes predicting diagenetic sweet spots difficult. This study investigates the low-permeability clastic reservoirs in the Mesozoic of the Tanhai area, Jiyang Depression. Integrating thin-section petrography, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-pressure mercury injection, and burial history analysis, it reveals multi-phase diagenetic characteristics from a tectonic perspective and quantifies pore structure modification mechanisms. Results show the reservoirs underwent strong compaction and multi-phase carbonate-dominated cementation. Dissolution is further distinguished into meteoric water, organic acid, and volcanic material-related alkaline dissolution. Pore-throat evolution indicates that compaction and cementation shift pores towards micropores (<0.1 µm), while meteoric and alkaline dissolution enlarge mesopores (0.1–10 µm) crucial for permeability. Reservoir diagenesis is divided into five tectonic—diagenetic stages. A quantitative model identifies two diagenetic sweet spot types: (1) zones near unconformities intensely leached by meteoric water, and (2) relatively shallow intervals affected by alkaline dissolution related to volcanic rocks under deep burial. This study establishes a tectonic—diagenetic—pore structure framework. It provides a basis for predicting reservoir sweet spots in analogous multi-phase tectonic settings. Full article
(This article belongs to the Special Issue Natural and Induced Diagenesis in Clastic Rock)
Show Figures

Figure 1

27 pages, 5637 KB  
Article
The Failure Process and Stability Analysis of Earthen Dam Under the Coupling Effect of Seepage–Suffusion–Stress
by Yanzhen Zhu, Honglei Sun and Shanlin Xu
Buildings 2026, 16(2), 440; https://doi.org/10.3390/buildings16020440 - 21 Jan 2026
Viewed by 94
Abstract
Suffusion is a primary cause of failure in hydraulic structures, including earth dams; however, the mechanisms underlying suffusion-induced failure and the stability changes remain poorly understood. This study derives and implements a sequentially coupled computational model that considers the effect of seepage–suffusion–stress, aimed [...] Read more.
Suffusion is a primary cause of failure in hydraulic structures, including earth dams; however, the mechanisms underlying suffusion-induced failure and the stability changes remain poorly understood. This study derives and implements a sequentially coupled computational model that considers the effect of seepage–suffusion–stress, aimed at simulating the entire process of suffusion-induced failure in earth dams and evaluating their stability. The accuracy of the proposed approach is validated through comparisons with one-dimensional consolidation theory, suffusion experiments, and triaxial tests on eroded soil. A model of the earth dam at high water levels is developed to simulate the full process of suffusion-induced failure and assess its stability. The results indicate that, under the influence of suffusion, fines are lost most rapidly at the dam toe, followed by the region near the upstream water level. In the later stages of suffusion, the soil near the slip surface undergoes excessive compression, leading to an increase in fine content rather than a decrease. The mechanism of suffusion-induced failure in earth dams involves severe fines loss at the dam toe and near the upstream water level, which leads to significant soil weakening and the formation of a continuous plastic zone extending from the dam toe to the upstream water level. The safety factor of the earth dam, when suffusion effects are not considered, remains nearly constant, making it challenging to accurately assess its stability. The safety factor of the earth dam remains nearly constant when suffusion is neglected, indicating that overlooking suffusion presents substantial safety risks. Furthermore, reducing the permeability coefficient of the earth dam can effectively mitigate suffusion. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 13319 KB  
Article
A Study on the Micro-Scale Flow Patterns and Ion Regulation Mechanisms in Low-Salinity Water Flooding
by Xiong Liu, Tuanqi Yao, Yueqi Cui, Lingxuan Peng and Yirui Ren
Energies 2026, 19(2), 509; https://doi.org/10.3390/en19020509 - 20 Jan 2026
Viewed by 81
Abstract
As an effective technology for enhancing oil recovery, low-salinity water flooding requires further investigation into its microscopic displacement mechanisms and the regulatory roles of key ions. Based on microscopic visualization displacement experiments, this study systematically investigated the effects of injected water salinity, key [...] Read more.
As an effective technology for enhancing oil recovery, low-salinity water flooding requires further investigation into its microscopic displacement mechanisms and the regulatory roles of key ions. Based on microscopic visualization displacement experiments, this study systematically investigated the effects of injected water salinity, key ion types (Na+, K+, Ca2+, Mg2+, HCO3, CO32−, SO42−, and OH), and their concentrations on crude oil displacement behavior in both high- and low-permeability zones. Experimental results indicate that no significant correlation exists between displacement efficiency and injected water salinity in high-permeability zones. In low-permeability zones, displacement efficiency increases with decreasing salinity, peaking at 26.5% when injected water salinity reaches 5000 mg/L. The cation displacement efficiency in the formation, from highest to lowest, is Ca2+ > K+ > Mg2+ > Na+. The anion displacement efficiency, from highest to lowest, is OH > SO42− > CO32− > HCO3. When the CaCl2 concentration decreased from 100 wt% to 50 wt%, the displacement effect in the low-permeability zone improved further, indicating that a higher concentration of the divalent cation Ca2+ is not necessarily better. In medium-to-high salinity formation water reservoirs, and under conditions where the influence of clay minerals is disregarded, ion type and reservoir permeability are the most significant factors affecting oil recovery efficiency. These findings provide theoretical support for elucidating the micro-dynamic mechanisms of low-salinity water flooding in low-permeability zones and optimizing injection water formulations. Full article
Show Figures

Figure 1

35 pages, 3594 KB  
Article
Novel Carvacrol or trans-Cinnamaldehyde@ZnO/Natural Zeolite Ternary Nanohybrid for Poly-L-lactide/tri-ethyl Citrate Based Sustainable Active Packaging Films
by Areti A. Leontiou, Achilleas Kechagias, Eleni Kollia, Anna Kopsacheili, Andreas Giannakas, Ioanna Farmaki, Yelyzaveta K. Oliinychenko, Alexandros C. Stratakos, Charalampos Proestos and Aris E. Giannakas
Appl. Sci. 2026, 16(2), 999; https://doi.org/10.3390/app16020999 - 19 Jan 2026
Viewed by 149
Abstract
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce [...] Read more.
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce active films. A key finding was the distinct interaction mechanism: tCN underwent strong chemisorption with ZnO, creating a sustained-release reservoir, while CV was predominantly physisorbed, leading to rapid release. This interfacial divergence dictated functional performance. Antibacterial assessment of nanohybrids revealed that tCN@ZnO/NZ0.25 exhibited the highest inhibition zones against pathogens, correlating with its chemisorbed reservoir. In films, however, CV-based formulations (especially CV@ZnO/NZ0.25) showed superior immediate antioxidant activity (EC50, ~DPPH~ = 34.43 mg/mL) and an 82% reduction in oxygen permeability. In contrast, tCN-based films (especially tCN@ZnO/NZ1.0) demonstrated superior, sustained antibacterial efficacy. In a minced pork preservation study, both films delayed lipid oxidation and preserved heme iron, while the tCN-based film provided better long-term microbial control. This work demonstrates that engineering the nanocarrier–active compound interface enables precise tailoring of release kinetics, which can be optimized for either high immediate antioxidant power or long-term antimicrobial action, depending on specific food preservation requirements. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Sustainable Packaging)
Show Figures

Graphical abstract

12 pages, 3584 KB  
Article
“In Situ” Studies on Coke Drilled from Tuyere in a Working COREX Melter Gasifier
by Hao Liu, Wen Hu, Xinyue Liu, Zipeng Dou and Weiqiang Liu
Processes 2026, 14(2), 323; https://doi.org/10.3390/pr14020323 - 16 Jan 2026
Viewed by 217
Abstract
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing [...] Read more.
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing material to partly replace lump coal to increase the burden voidage. The charged coke undergoes successive physical and chemical attacks that progressively weaken its strength, finally reducing the coke particle size and impairing overall burden permeability. Drilling “in situ” coke samples from the tuyere zone is an effective method to study coke behaviors inside a working melter gasifier. This work obtained tuyere coke samples by direct coke sample drilling during a melter gasifier blow-out and then systematically investigated the coke deterioration behaviors in the melter gasifier. The results show that the mean particle size decreased from an initial 50.3 mm to 31.6 mm at the tuyere, evidencing the severe fragmentation of coke. Basic oxides and alkali metals in the coke ash increased, indicating alkali recycling and enrichment occurred in the melter gasifier. Microcrystalline structure analysis of coke revealed a high degree of graphitization. Furthermore, coke degradation was further accelerated by both alkalis trapped in the coke pores and slag infiltration into the pores. This study clarifies the properties of the coke in the tuyere of the COREX melter gasifier and provides a theoretical basis for its operational optimization. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 8828 KB  
Article
Oil-Water Biphasic Metal-Organic Supramolecular Gel for Lost Circulation Control: Formulation Optimization, Gelation Mechanism, and Plugging Performance
by Qingwang Li, Songlei Li, Ye Zhang, Chaogang Chen, Xiaochuan Wu, Menglai Li, Shubiao Pan and Junfei Peng
Gels 2026, 12(1), 74; https://doi.org/10.3390/gels12010074 - 15 Jan 2026
Viewed by 160
Abstract
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid [...] Read more.
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid in situ sealing in OBDF loss zones. The optimized formulation uses an oil-phase to aqueous gelling-solution volume ratio of 10:3, with 2.0 wt% Span 85, 12.5 wt% TXP-4, and 5.0 wt% NaAlO2. Apparent-viscosity measurements and ATR–FTIR analysis were used to evaluate the effects of temperature, time, pH, and shear on MOSG gelation. Furthermore, the structural characteristics and performances of MOSGs were systematically investigated by combining microstructural characterization, thermogravimetric analysis, rheological tests, simulated fracture-plugging experiments, and anti-shear evaluations. The results indicate that elevated temperatures (30–70 °C) and mildly alkaline conditions in the aqueous gelling solution (pH ≈ 8.10–8.30) promote P–O–Al coordination and strengthen hydrogen bonding, thereby facilitating the formation of a three-dimensional network. In contrast, strong shear disrupts the nascent network and delays gelation. The optimized MOSGs rapidly exhibit pronounced viscoelasticity and thermal resistance (~193 °C); under high shear (380 rpm), the viscosity retention exceeds 60% and the viscosity recovery exceeds 70%. In plugging tests, MOSG forms a dense sealing layer, achieving a pressure-bearing gradient of 2.27 MPa/m in simulated permeable formations and markedly improving the fracture pressure-bearing capacity in simulated fractured formations. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

20 pages, 4698 KB  
Article
Controlling Mechanisms of Burial Karstification in Gypsum Moldic Vug Reservoirs of the 4-1 Sub-Member, Member 5 of the Majiagou Formation, Central Ordos Basin
by Jiang He, Hang Li, Lei Luo, Lin Qiao, Juzheng Li, Xiaolin Ma, Yuhan Zhang, Jian Yao, Sisi Jiang and Yaping Wang
Processes 2026, 14(2), 275; https://doi.org/10.3390/pr14020275 - 13 Jan 2026
Viewed by 156
Abstract
The moldic pore-vuggy reservoirs of the Ma54-Ma51 sub-member in the Majiagou Formation, central Ordos Basin, are key targets for deep natural gas exploration, yet the alteration mechanisms and controlling factors of burial-stage pressure-released water karstification remain unclear. Herein, an integrated [...] Read more.
The moldic pore-vuggy reservoirs of the Ma54-Ma51 sub-member in the Majiagou Formation, central Ordos Basin, are key targets for deep natural gas exploration, yet the alteration mechanisms and controlling factors of burial-stage pressure-released water karstification remain unclear. Herein, an integrated methodology encompassing core observation, thin-section analysis, and geochemical testing was adopted to systematically clarify the development characteristics and multi-factor coupling control mechanisms of this karst process. Results show that burial-stage pressure-released water karst is dominated by overprinting on pre-existing syndepositional and supergene pore networks, forming complex reservoir spaces via synergistic selective dissolution. The development of preferential dissolution zones is jointly controlled by differential compaction of the weathering crust, permeability heterogeneity of the overlying strata and weathered crust, and diagenetic fluid properties. After the supergene diagenetic stage, differential tectonic deformation and burial compaction induced overpressure in pore fluids, which drove acidic pressure-released water to migrate along high-permeability pathways such as the “sandstone windows” overlying the Ordovician weathering crust. These fluids preferentially dissolved high-permeability moldic pore-vuggy dolomites in paleo-karst platforms and steep slope zones, whereas tight micritic dolomites served as effective barriers. The acidic environment sustained by organic acids and H2S in pressure-released water promoted carbonate dissolution, and carbon-oxygen isotopes as well as pyrite δ34S values verify that the fluids were derived from mudstone compaction. This study reveals that the distribution of high-quality reservoirs is jointly determined by the synergistic preservation of moldic pore-vuggy systems in paleo-karst platforms and steep slopes and directional alteration of pressure-released water along preferential pathways, providing crucial geological guidance for the evaluation of deep carbonate reservoirs. Full article
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 134
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 191
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

16 pages, 5230 KB  
Article
A Novel Hybrid Model for Groundwater Vulnerability Assessment and Its Application in a Coastal City
by Yanwei Wang, Haokun Yu, Zongzhong Song, Jingrui Wang and Qingguo Song
Sustainability 2026, 18(2), 674; https://doi.org/10.3390/su18020674 - 9 Jan 2026
Viewed by 219
Abstract
Groundwater vulnerability assessments serve as essential tools for sustainable groundwater management, particularly in regions with intensive anthropogenic activities. However, improving the objectivity and predictive reliability of vulnerability assessment frameworks remains a critical scientific challenge in groundwater science, especially for coastal aquifer systems characterized [...] Read more.
Groundwater vulnerability assessments serve as essential tools for sustainable groundwater management, particularly in regions with intensive anthropogenic activities. However, improving the objectivity and predictive reliability of vulnerability assessment frameworks remains a critical scientific challenge in groundwater science, especially for coastal aquifer systems characterized by strong heterogeneity and complex hydrogeological processes. The traditional DRASTIC model is a widely recognized method but suffers from subjectivity in assigning parameter ratings and weights, often leading to arbitrary and potentially inaccurate vulnerability maps. This limitation also restricts its applicability in areas with complex hydrogeological conditions. To enhance the accuracy and adaptability of the traditional DRASTIC model, a hybrid PSO-BP-DRASTIC framework was developed and applied it to a coastal city in China. Specifically, the model employs a backpropagation neural network (BP-NN) to optimize indicator weights and integrates the particle swarm optimization (PSO) algorithm to refine the initial weights and thresholds of the BP-NN. By introducing a data-driven and globally optimized weighting mechanism, the proposed framework effectively overcomes the inherent subjectivity of conventional empirical weighting schemes. Using ten-fold cross-validation and observed nitrate concentration data, the traditional DRASTIC, BP-DRASTIC, and PSO-BP-DRASTIC models were systematically validated and compared. The results demonstrate that (1) the PSO-BP-DRASTIC model achieved the highest classification accuracy on the test set, the highest stability across ten-fold cross-validation, and the strongest correlation with the nitrate concentrations; (2) the importance analysis identified the aquifer thickness and depth to the groundwater table as the most influential factors affecting groundwater vulnerability in Yantai; and (3) the spatial assessments revealed that high-vulnerability zones (7.85% of the total area) are primarily located in regions with intensive agricultural activities and high aquifer permeability. The hybrid PSO-BP-DRASTIC model effectively mitigates the subjectivity of the traditional DRASTIC method and the local optimum issues inherent in BP-NNs, significantly improving the assessment accuracy, stability, and objectivity. From a scientific perspective, this study demonstrates the feasibility of integrating swarm intelligence and neural learning into groundwater vulnerability assessment, providing a transferable and high-precision methodological paradigm for data-driven hydrogeological risk evaluation. This novel hybrid model provides a reliable scientific basis for the reasonable assessment of groundwater vulnerability. Moreover, these findings highlight the importance of integrating a hybrid optimization strategy into the traditional DRASTIC model to enhance its feasibility in coastal cities and other regions with complex hydrogeological conditions. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

20 pages, 8380 KB  
Article
Numerical Study on the Permeability Evolution Within Fault Damage Zones
by Yulong Gu, Jiyuan Zhao, Debin Kong, Guoqing Ji, Lihong Shi, Hongtao Li and Zhenguo Mao
Water 2026, 18(1), 134; https://doi.org/10.3390/w18010134 - 5 Jan 2026
Viewed by 307
Abstract
This study investigates the permeability evolution in floor fault damage zones under stress–seepage–damage coupling, with a focus on water inrush risks caused by confined water upward conduction during deep mining. A stochastic fracture geometry model of the fault damage zone was developed using [...] Read more.
This study investigates the permeability evolution in floor fault damage zones under stress–seepage–damage coupling, with a focus on water inrush risks caused by confined water upward conduction during deep mining. A stochastic fracture geometry model of the fault damage zone was developed using the discrete fracture network (DFN) model and the Monte Carlo method. Based on geological data from a mining area in Shandong, a multiphysics-coupled numerical model under mining-induced conditions was established with COMSOL Multiphysics. The simulations visually reveal the dynamic evolution of damage propagation patterns in the floor strata during working face advancement. Results indicate that the damage zone stabilizes after the working face advances to 80 m, with its morphology exhibiting strong spatial correlation to regions of high seepage velocity. Moreover, increasing confined water pressure plays a critical role in driving flow field evolution. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

33 pages, 6282 KB  
Article
Numerical Simulation of Liquefaction Behaviour in Coastal Reclaimed Sediments
by Pouyan Abbasimaedeh
GeoHazards 2026, 7(1), 8; https://doi.org/10.3390/geohazards7010008 - 3 Jan 2026
Viewed by 232
Abstract
This study presents a validated numerical investigation into the seismic liquefaction potential of fine-grained reclaimed sediments commonly encountered in coastal, containment, and reclamation projects. Fine-grained reclaimed sediments pose a particular challenge for seismic liquefaction assessment due to their low permeability, high fines content, [...] Read more.
This study presents a validated numerical investigation into the seismic liquefaction potential of fine-grained reclaimed sediments commonly encountered in coastal, containment, and reclamation projects. Fine-grained reclaimed sediments pose a particular challenge for seismic liquefaction assessment due to their low permeability, high fines content, and complex cyclic response under earthquake loading. A fully coupled, nonlinear finite element model was developed using the Pressure-Dependent Multi-Yield (PDMY) constitutive framework, calibrated against laboratory Cyclic Direct Simple Shear (CDSS) tests and verified using in situ Cone Penetration Tests with pore pressure measurement (CPTu). The model effectively captured the dynamic response of saturated sediments, including excess pore pressure generation, cyclic mobility, and post-liquefaction behavior, under three earthquake ground motions: Livermore, Chi-Chi, and Loma Prieta. Results showed that near-surface layers (0–2.3 m) experienced full liquefaction within two to three cycles, with excess pore pressure ratios (Ru) approaching 1.0 and peak pressures closely matching laboratory data with less than 10% deviation. The numerical approach revealed that traditional CPT-based cyclic resistance methods underestimated liquefaction susceptibility in intermediate layers due to limitations in accounting for pore pressure redistribution, evolving permeability, and seismic amplification effects. In contrast, the finite element model captured progressive strength degradation, revealing strength gain in deeper layers due to consolidation, while upper zones remained vulnerable due to low confinement and resonance effects. A critical threshold of Ru ≈ 0.8 was identified as the onset of rapid shear strength loss. The findings confirm the advantage of advanced numerical modeling over empirical methods in capturing the complex cyclic behavior of reclaimed sediments and support the adoption of performance-based seismic design for such geotechnically sensitive environments. Full article
Show Figures

Figure 1

16 pages, 2516 KB  
Article
Analysis of Occurrence of Deep Coalbed Methane and Its “Desorption–Diffusion–Seepage” Process
by Bingwen Zhang, Tao Jiang, Li Niu, Sha Li and Shu Tao
Separations 2026, 13(1), 19; https://doi.org/10.3390/separations13010019 - 30 Dec 2025
Viewed by 222
Abstract
China has abundant deep coalbed methane (CBM) resources; however, high temperature, stress, and reservoir pressure complicate the gas adsorption–desorption–diffusion–seepage processes, severely restricting the development of deep CBM. Through experimental research on adsorption, desorption, diffusion, and seepage behaviors of various coal samples, the control [...] Read more.
China has abundant deep coalbed methane (CBM) resources; however, high temperature, stress, and reservoir pressure complicate the gas adsorption–desorption–diffusion–seepage processes, severely restricting the development of deep CBM. Through experimental research on adsorption, desorption, diffusion, and seepage behaviors of various coal samples, the control mechanisms of deep coal reservoir properties on CBM production in the Linxing–Shenfu region have been revealed. The results indicate that CBM adsorption and desorption characteristics are jointly controlled by coal rank, ash yield, temperature. and pressure. Among the above conditions, coal rank and pressure exhibit positive effects, while ash yield and temperature show inhibitory effects. Analysis of desorption efficiency based on the Langmuir model further identifies sensitive desorption and rapid desorption stages as key phases for enhancing productivity. Moreover, the gas diffusion mechanism is dynamically evolving, with Knudsen diffusion and Fick diffusion being the main modes during high ground pressure stages, gradually transitioning to the coexistence of Knudsen, transition, and Fick diffusions as pressure decreases. Concurrently, gas–water seepage experiments demonstrate that increasing temperature will reduce the irreducible water saturation and enhance the relative permeability of the gas. Since irreducible water saturation is negatively correlated with relative permeability of gas, the relative permeability of the gas phase, cross-point saturation, and the range of the two-phase co-seepage zone all significantly increases with the increase in temperature. The findings systematically elucidate the regulatory mechanisms of deep coal reservoir properties in the process of “adsorption–desorption–diffusion–seepage,” providing critical theoretical support for optimizing development strategies and enhancing the efficiency of deep CBM development. Full article
Show Figures

Figure 1

Back to TopTop