Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = high-performance polymers (HPP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12421 KiB  
Article
Fluid–Structure Interaction of a Darrieus-Type Hydrokinetic Turbine Modified with Winglets
by Emerson Escobar Nunez, Diego García González, Omar Darío López, Juan Pablo Casas Rodríguez and Santiago Laín
J. Mar. Sci. Eng. 2025, 13(3), 548; https://doi.org/10.3390/jmse13030548 - 12 Mar 2025
Viewed by 753
Abstract
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy [...] Read more.
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy represents an attractive solution to address the demand for electricity in rural areas of Colombia that are not connected to the electrical grid. In the current paper, the fluid–structure interaction (FSI) of a recently designed Vertical-Axis Hydrokinetic Turbine (VAHT) Straight-Bladed (SB) Darrieus-type, modified with symmetric winglets, was studied by implementing the sliding mesh method (SMM). By coupling with Computational Fluid Dynamics (CFD) numerical simulations, the FSI study demonstrated that the hydrodynamic loads obtained can cause potential fatigue damage in the blades of the Straight-Bladed (SB) Darrieus VAHT. Fatigue life was assessed using the stress–life (S-N) approach, and materials such as structural steel, short glass fiber reinforced composites (SGFRC), and high-performance polymers (HPP), such as PEEK, were studied as potential materials for the construction of the blades. FSI results showed that the biaxiality index (BI) provides a good understanding of the dominant stresses in the blades as the azimuth angle changes. It was also shown that structural steel and PEEK are good materials for the manufacturing of the blades, both from a fatigue resistance and modal perspective. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

12 pages, 1497 KiB  
Article
Evaluation of Shear Bond Strength and Failure Modes of Lithium Disilicate Ceramic Veneering Material to Different High-Performance Polymers
by Sarah M. Alnafaiy, Nawaf Labban, Refal Albaijan, Rawan N. AlKahtani, Khulud A. Al-Aali, Heba Wageh Abozaed, Nada Y. Alturki and Jomana E. Alenezi
Polymers 2025, 17(5), 554; https://doi.org/10.3390/polym17050554 - 20 Feb 2025
Viewed by 1315
Abstract
This study assessed the shear bond strength (SBS) and failure modes of lithium disilicate ceramic veneering material to different high-performance polymers. Thirty-six square specimens measuring 7 × 7 × 2 ± 0.05 mm were prepared from pure polyetheretherketone (PEEK), Bio-high performance PEEK (BioHPP) [...] Read more.
This study assessed the shear bond strength (SBS) and failure modes of lithium disilicate ceramic veneering material to different high-performance polymers. Thirty-six square specimens measuring 7 × 7 × 2 ± 0.05 mm were prepared from pure polyetheretherketone (PEEK), Bio-high performance PEEK (BioHPP) and Trilor discs. Polymer specimens were air-borne abraded utilizing aluminum oxide particles, cleaned, and a bonding agent was applied (visio. link). The veneering LDC material (3 × 2 mm) was milled, hydrofluoric acid etched (9.5%) and primed (Clearfil ceramic). The LDC was bonded to the polymer specimens using dual-cured resin cement (Panavia V5) and light polymerized. The bonded specimens were subjected to 5000 cycles of physiological aging by thermocycling, and the SBS test was performed in a universal testing machine at 0.5 mm/min cross-head speed. The debonded specimens were analyzed to determine the primary bond failure sites (adhesive, mixed or cohesive). Data analysis was performed using one-way ANOVA and a post hoc Tukey test (α ≤ 0.05). The BioHPP material demonstrated the highest SBS values (23.94 ± 1.43 MPa), and the Trilor group recorded the lowest SBS values (17.09 ± 1.07 MPa). The PEEK group showed a mean SBS of 21.21 ± 1.51 MPa. The SBS comparison showed significant variations across all material groups (p < 0.001). Regarding failure modes, adhesive failure was observed in 40% of BioHPP and PEEK specimens and 90% of Trilor specimens. The cohesive failure occurred in 50% of PEEK and 30% of BioHPP specimens, while the Trilor specimens showed no cohesive failure. Mixed failures were reported in 30% of BioHPP and 10% of PEEK and Trilor specimens. The BioHPP material demonstrated high SBS followed by PEEK and Trilor. The SBS between the tested materials was statistically significant. However, the SBS of the tested implant framework materials was above the limit stipulated by the ISO 10477 standard (5 MPa) and the clinically acceptable range of 10–12 MPa. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 3977 KiB  
Article
Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study
by Robert Kowalski, Wojciech Frąckiewicz, Magdalena Kwiatkowska, Małgorzata Światłowska-Bajzert and Ewa Sobolewska
Materials 2025, 18(3), 561; https://doi.org/10.3390/ma18030561 - 26 Jan 2025
Viewed by 955
Abstract
The aim of these in vitro studies was to determine and compare the mechanical and tribological performance of two commercially available thermoplastic materials, namely BioHPP and Biocetal, used in dental prosthetics. In order to perform the comparative tests of both materials, the dog-bone [...] Read more.
The aim of these in vitro studies was to determine and compare the mechanical and tribological performance of two commercially available thermoplastic materials, namely BioHPP and Biocetal, used in dental prosthetics. In order to perform the comparative tests of both materials, the dog-bone shaped samples were formed by an injection molding process as in standard polymer materials research, wherein Biocetal samples constituted the research group, and BioHPP samples served as a control group. In the presented studies, their mechanical parameters were reported and analyzed: namely, Shore’s hardness, unnotched impact strength, tensile strength, flexural strength, as well as abrasive wear resistance, obtained within appropriate tribological and mechanical tests. The Shapiro–Wilk test, Q–Q plot analysis, Grubbs test and Student’s t-test (p < 0.05) were used to statistically evaluate the results. The experimental results revealed that BioHPP material is characterized by higher hardness, impact strength, bending strength, and also lower “wet” abrasion wear if compared to Biocetal performance. However, it is subject to higher abrasive wear under “dry” conditions and reveals higher stiffness as well as lower ability to deform, which could affect a patient’s comfort during application. BioHPP, despite being a high-performance polymer material, also has some drawbacks that may affect the poorer long-term use of dentures in people producing less saliva. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Oral Rehabilitation)
Show Figures

Figure 1

10 pages, 10845 KiB  
Case Report
The Effectiveness and Predictability of BioHPP (Biocompatible High-Performance Polymer) Superstructures in Toronto-Branemark Implant-Prosthetic Rehabilitations: A Case Report
by Stefano Speroni, Luca Antonelli, Luca Coccoluto, Marco Giuffrè, Francesco Sarnelli, Tommaso Tura and Enrico Gherlone
Prosthesis 2025, 7(1), 10; https://doi.org/10.3390/prosthesis7010010 - 22 Jan 2025
Cited by 1 | Viewed by 1243
Abstract
Objectives: To evaluate the clinical performance of BioHPP® (Biocompatible High-Performance Polymer) superstructures in full-arch implant-prosthetic rehabilitations following the Toronto-Branemark protocol, focusing on biomechanical and biological outcomes. Methods: A 70-year-old edentulous male patient underwent full-arch implant-prosthetic rehabilitation using BioHPP® superstructures [...] Read more.
Objectives: To evaluate the clinical performance of BioHPP® (Biocompatible High-Performance Polymer) superstructures in full-arch implant-prosthetic rehabilitations following the Toronto-Branemark protocol, focusing on biomechanical and biological outcomes. Methods: A 70-year-old edentulous male patient underwent full-arch implant-prosthetic rehabilitation using BioHPP® superstructures fabricated through a CAD-CAM workflow. Radiological and clinical evaluations were conducted to plan implant placement and assess outcomes after one-year of follow-up. The primary endpoints included prosthetic stability, peri-implant bone resorption, and patient-reported satisfaction. Results: The BioHPP® superstructure demonstrated effective stress distribution, leading to minimal peri-implant bone resorption and improved implant stability. Clinical evaluations showed excellent prosthetic fit and functionality, with no complications during the observation period. Radiological analyses confirmed the absence of prosthetic misfits, while patient-reported outcomes indicated high levels of comfort and aesthetic satisfaction. Conclusions: BioHPP® superstructures offer a promising alternative to traditional materials for full-arch implant-prosthetic rehabilitations, providing significant biomechanical and aesthetic advantages. These findings suggest that BioHPP® may enhance clinical outcomes, though further research with larger cohorts and longer follow-up periods is required to validate its long-term reliability. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

33 pages, 5643 KiB  
Review
Research Progress in Special Engineering Plastic-Based Electrochromic Polymers
by Yixuan Liu, Zhen Xing, Songrui Jia, Xiangfu Shi, Zheng Chen and Zhenhua Jiang
Materials 2024, 17(1), 73; https://doi.org/10.3390/ma17010073 - 22 Dec 2023
Cited by 15 | Viewed by 2240
Abstract
SPECPs are electrochromic polymers that contain special engineering plastic structural characteristic groups (SPECPs). Due to their high thermal stability, mechanical properties, and weather resistance, they are also known as high-performance electrochromic polymer (HPEP or HPP). Meanwhile, due to the structural characteristics of their [...] Read more.
SPECPs are electrochromic polymers that contain special engineering plastic structural characteristic groups (SPECPs). Due to their high thermal stability, mechanical properties, and weather resistance, they are also known as high-performance electrochromic polymer (HPEP or HPP). Meanwhile, due to the structural characteristics of their long polymer chains, these materials have natural advantages in the application of flexible electrochromic devices. According to the structure of special engineering plastic groups, SPECPs are divided into five categories: polyamide, polyimide, polyamide imide, polyarylsulfone, and polyarylketone. This article mainly introduces the latest research on SPECPs. The structural design, electrochromic properties, and applications of these materials are also introduced in this article, and the challenges and future development trends of SPECPs are prospected. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 3548 KiB  
Article
Comparison of the Surface Roughness of CAD/CAM Metal-Free Materials Used for Complete-Arch Implant-Supported Prostheses: An In Vitro Study
by Nataly Mory, Rocío Cascos, Alicia Celemín-Viñuela, Cristina Gómez-Polo, Rubén Agustín-Panadero and Miguel Gómez-Polo
Biomedicines 2023, 11(11), 3036; https://doi.org/10.3390/biomedicines11113036 - 13 Nov 2023
Cited by 4 | Viewed by 1703
Abstract
The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete-arch implant-supported [...] Read more.
The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete-arch implant-supported prostheses (CAISPs), and to investigate the effect of artificial aging on their roughness. A total of 40 milled prostheses were divided into 4 groups (n = 10) according to their framework material, bio.HPP (B), bio.HPP Plus (BP), zirconia Luxor Z Frame (ZF), and Luxor Z True Nature (ZM). The areal surface roughness “Sa” and the maximum height “Sz” of each specimen was measured on the same site after laboratory fabrication (lab as-received specimen) and after thermocycling (5–55 °C, 10,000 cycles) by using a noncontact optical profilometer. Data were analyzed using SPSS version 28.0.1. One-way ANOVA with multiple comparison tests (p = 0.05) and repeated measures ANOVA were used. After thermocycling, all materials maintained “Sa” values at the laboratory as-received specimen level (p = 0.24). “Sz” increased only for the zirconia groups (p = 0.01). B-BP exhibited results equal/slightly better than ZM-ZF. This study provides more realistic surface texture values of new metal-free materials used in real anatomical CAISPs after the manufacturing and aging processes and establishes a detailed and reproducible measurement workflow. Full article
(This article belongs to the Special Issue Progress in Biomaterials and Technologies in Dentistry)
Show Figures

Figure 1

13 pages, 1663 KiB  
Article
Poly (Aryl Amino Ketone/Sulfones) with Obvious Electrochromic Effect Prepared by One-Step Low-Cost and Facile Synthesis
by Songrui Jia, Zhen Xing, Qilin Wang, Shiwei Wang and Zheng Chen
Molecules 2023, 28(14), 5297; https://doi.org/10.3390/molecules28145297 - 9 Jul 2023
Cited by 1 | Viewed by 1948
Abstract
High-performance donor-acceptor (D-A) polymers, as an important class of electrochromic (EC) materials, have attracted extensive attention. In this paper, a series of novel poly (aryl amino ketone) (PAAK) and poly (aryl amino sulfone) (PAAS) type high-performance polymers (HPP) with electrochromism were prepared by [...] Read more.
High-performance donor-acceptor (D-A) polymers, as an important class of electrochromic (EC) materials, have attracted extensive attention. In this paper, a series of novel poly (aryl amino ketone) (PAAK) and poly (aryl amino sulfone) (PAAS) type high-performance polymers (HPP) with electrochromism were prepared by a simple C-N coupling reaction and were coated on an indium tin oxide (ITO) substrate as EC films. All four polymers were prepared by a nucleophilic substitution reaction using commercially purchased amine monomers with difluoride sulfone/ketone using potassium carbonate as a catalyst. A series of tests were performed to compare and analyze the effects of the different electron-withdrawing abilities of sulfone and carbonyl groups, and the different conjugation lengths of these two TPA structures were connected to the EC properties of the polymer. The different phenyl or biphenyl of the two TPA structures mainly affected the oxidation potential of the polymer, while the sulfone group and the carbonyl group, with a different electron absorption ability, had a greater influence on the energy band and cyclic stability. The optical contrast of PAAS−BT at 850 nm was up to 58% and maintained 450 cycles, indicating that this series of materials had a broad application prospect waiting for further research. In addition to the performance, the raw materials used in this work could be directly and commercially purchased for a low price; the two aniline monomers were priced at about $0.43 /g and $0.15 /g, respectively. This method significantly reduces the cost and provides a new idea for subsequent large-scale production and practical applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 1726 KiB  
Review
Description of Poly(aryl-ether-ketone) Materials (PAEKs), Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) for Application as a Dental Material: A Materials Science Review
by Syazwani Mohamad Zol, Muhammad Syafiq Alauddin, Zulfahmi Said, Mohd Ifwat Mohd Ghazali, Lee Hao-Ern, Durratul Aqwa Mohd Farid, Nur A’fifah Husna Zahari, Aws Hashim Ali Al-Khadim and Azrul Hafiz Abdul Aziz
Polymers 2023, 15(9), 2170; https://doi.org/10.3390/polym15092170 - 2 May 2023
Cited by 43 | Viewed by 8962
Abstract
Poly(aryl-ether-ketone) materials (PAEKs), a class of high-performance polymers comprised of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), have attracted interest in standard dental procedures due to their inherent characteristics in terms of mechanical and biological properties. Polyetheretherketone (PEEK) is a restorative dental material widely used [...] Read more.
Poly(aryl-ether-ketone) materials (PAEKs), a class of high-performance polymers comprised of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), have attracted interest in standard dental procedures due to their inherent characteristics in terms of mechanical and biological properties. Polyetheretherketone (PEEK) is a restorative dental material widely used for prosthetic frameworks due to its superior physical, mechanical, aesthetic, and handling features. Meanwhile, polyetherketoneketone (PEKK) is a semi-crystalline thermoplastic embraced in the additive manufacturing market. In the present review study, a new way to fabricate high-performance polymers, particularly PEEK and PEKK, is demonstrated using additive manufacturing digital dental technology, or 3-dimensional (3D) printing. The focus in this literature review will encompass an investigation of the chemical, mechanical, and biological properties of HPPs, particularly PEEK and PEKK, along with their application particularly in dentistry. High-performance polymers have gained popularity in denture prosthesis in advance dentistry due to their flexibility in terms of manufacturing and the growing interest in utilizing additive manufacturing in denture fabrication. Further, this review also explores the literature regarding the properties of high-performance polymers (HPP) compared to previous reported polymers in terms of the dental material along with the current advancement of the digital designing and manufacturing. Full article
(This article belongs to the Special Issue Functionalization and Medical Application of Polymer Materials)
Show Figures

Figure 1

13 pages, 3427 KiB  
Article
Micro-CT Marginal and Internal Fit Evaluation of CAD/CAM High-Performance Polymer Onlay Restorations
by Flavia Roxana Toma, Lavinia Cristina Moleriu and Liliana Porojan
Polymers 2023, 15(7), 1715; https://doi.org/10.3390/polym15071715 - 30 Mar 2023
Cited by 6 | Viewed by 2956
Abstract
(1) Background: The use of high-performance polymers for fixed restorations requires additional studies regarding their adaptability and processing with CAD/CAM technology. This in vitro study aims to assess the marginal and internal fit of PEEK and PEKK materials using microcomputed tomography. (2) Methods: [...] Read more.
(1) Background: The use of high-performance polymers for fixed restorations requires additional studies regarding their adaptability and processing with CAD/CAM technology. This in vitro study aims to assess the marginal and internal fit of PEEK and PEKK materials using microcomputed tomography. (2) Methods: Twenty-four (n = 8) MOD onlays made of PEKK (Pekkton ivory), unmodified PEEK (Juvora medical), and modified PEEK (BioHPP) were investigated. A typodont mandibular left first molar was scanned to achieve 24 resin, 3D printed abutment teeth. The onlays were fabricated with a five-axis milling machine, and after cementation of the specimens, the marginal (MG) and internal gaps (IG) were evaluated at twelve points in the mesio-distal section and thirteen points in the bucco-lingual section using microcomputed tomography. For statistical data analysis, Wilcoxon signed-rank/paired Student t-Test, Mann–Whitney/unpaired Student t-Test, and one-way ANOVA test were applied. (3) Results: Significant differences (p < 0.05; α = 0.05) were reported between the MG and IG for each material for all three polymers and also among two materials in terms of the MG and IG (except Juvora-BioHPP). The highest IG values were recorded in angular areas (axio-gingival line angle) in the mesio-distal section for all the polymers. (4) Conclusions: For all the materials, MG < IG. The type of polymer influenced the adaptability; the lowest marginal and internal gap mean values were recorded for BioHPP. The analyzed polymer used for onlays are clinically acceptable in terms of adaptability. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications II)
Show Figures

Figure 1

23 pages, 7084 KiB  
Article
Effect of Polymer Matrix on Inelastic Strain Development in PI- and PEI-Based Composites Reinforced with Short Carbon Fibers under Low-Cyclic Fatigue
by Sergey V. Panin, Alexey A. Bogdanov, Alexander V. Eremin, Dmitry G. Buslovich and Ivan S. Shilko
Polymers 2023, 15(5), 1228; https://doi.org/10.3390/polym15051228 - 28 Feb 2023
Cited by 5 | Viewed by 2759
Abstract
Since the inelastic strain development plays an important role in the low-cycle fatigue (LCF) of High-Performance Polymers (HPPs), the goal of the research was to study the effect of an amorphous polymer matrix type on the resistance to cyclic loading for both polyimide [...] Read more.
Since the inelastic strain development plays an important role in the low-cycle fatigue (LCF) of High-Performance Polymers (HPPs), the goal of the research was to study the effect of an amorphous polymer matrix type on the resistance to cyclic loading for both polyimide (PI)- and polyetherimide (PEI)-based composites, identically loaded with short carbon fibers (SCFs) of various lengths, in the LCF mode. The fracture of the PI and PEI, as well as their particulate composites loaded with SCFs at an aspect ratio (AR) of 10, occurred with a significant role played by cyclic creep processes. Unlike PEI, PI was less prone to the development of creep processes, probably because of the greater rigidity of the polymer molecules. This increased the stage duration of the accumulation of scattered damage in the PI-based composites loaded with SCFs at AR = 20 and AR = 200, causing their greater cyclic durability. In the case of SCFs 2000 µm long, the length of the SCFs was comparable to the specimen thickness, causing the formation of a spatial framework of unattached SCFs at AR = 200. The higher rigidity of the PI polymer matrix provided more effective resistance to the accumulation of scattered damage with the simultaneously higher fatigue creep resistance. Under such conditions, the adhesion factor exerted a lesser effect. As shown, the fatigue life of the composites was determined both by the chemical structure of the polymer matrix and the offset yield stresses. The essential role of the cyclic damage accumulation in both neat PI and PEI, as well as their composites reinforced with SCFs, was confirmed by the results of XRD spectra analysis. The research holds the potential to solve problems related to the fatigue life monitoring of particulate polymer composites. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymer Materials II)
Show Figures

Figure 1

16 pages, 4330 KiB  
Article
Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water
by Mohamed Gamal Mohamed, Mohamed Hammad Elsayed, Yunsheng Ye, Maha Mohamed Samy, Ahmed E. Hassan, Tharwat Hassan Mansoure, Zhenhai Wen, Ho-Hsiu Chou, Kuei-Hsien Chen and Shiao-Wei Kuo
Polymers 2023, 15(1), 182; https://doi.org/10.3390/polym15010182 - 30 Dec 2022
Cited by 42 | Viewed by 3574
Abstract
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different [...] Read more.
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g–1 and a large pore volume of 0.69 cm3 g–1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g−1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g−1 h−1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g−1 h−1), based on photocatalytic experimental results. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites)
Show Figures

Figure 1

43 pages, 7922 KiB  
Review
High Performance Polymer Composites: A Role of Transfer Films in Ensuring Tribological Properties—A Review
by Sergey V. Panin, Vladislav O. Alexenko and Dmitry G. Buslovich
Polymers 2022, 14(5), 975; https://doi.org/10.3390/polym14050975 - 28 Feb 2022
Cited by 34 | Viewed by 6123
Abstract
The purpose of this review is to summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The review includes three key sections, divided according to the tribological [...] Read more.
The purpose of this review is to summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The review includes three key sections, divided according to the tribological contact schemes regardless of the polymer matrix. In the second part, the analysis of composites is carried out in point contacts. The third section is devoted to the results of studies of HPP-based composites in linear ones. The fourth section summarizes information on flat contacts. Particular attention is paid to the formation of transfer films (TFs) in the contacts and their influence on the tribological patterns of the studied rubbing materials. As a conclusion, it is noted that the challenge of experimental methods for analyzing TFs, stated by K. Friedrich, is effectively solved in recent studies by the XPS method, which enables us to accurately determine their composition. Although this determination is completed after the tribological tests, it allows not only a more accurate interpretation of their results considering specific conditions and loading schemes, but also the ability to design HPP-based composites that form required TFs performing their preset functions. Full article
Show Figures

Graphical abstract

13 pages, 4685 KiB  
Article
Evaluation of Zirconia and High Performance Polymer Abutment Surface Roughness and Stress Concentration for Implant-Supported Fixed Dental Prostheses
by Roberto Lo Giudice, Alessandro Sindoni, João Paulo Mendes Tribst, Amanda Maria de Oliveira Dal Piva, Giuseppe Lo Giudice, Ugo Bellezza, Giorgio Lo Giudice and Fausto Famà
Coatings 2022, 12(2), 238; https://doi.org/10.3390/coatings12020238 - 12 Feb 2022
Cited by 11 | Viewed by 4065
Abstract
Background: The High Performance Polymer is a based polymer biomaterial that was introduced as dental material to manufacture dentures superstructure and dental implants abutments. However, its surface characteristics and stress state still need to be properly described. The aim of this study was [...] Read more.
Background: The High Performance Polymer is a based polymer biomaterial that was introduced as dental material to manufacture dentures superstructure and dental implants abutments. However, its surface characteristics and stress state still need to be properly described. The aim of this study was to compare the surface characteristics of a High Performance Polymer (Bio-HPP, Bredent, Senden, Germany) for computer-aided design and computer-aided manufacturing (CAD/CAM) milling and a Zirconia (Zirkonzahn, Steger, Ahrntal, Italy). Methods: The abutments surface roughness (Ra) was evaluated for each abutment material (N = 12) using a confocal laser microscope. Data were evaluated using One-Way ANOVA and Tukey tests (p < 0.05). In addition, a finite element analysis software was used to present stress measurement data as stress maps with 100 N loading. Results were generated according to Von-mises stress criteria and stress peaks were recorded from each structure. Results: Results showed a mean Ra of 0.221 ± 0.09 μm for Bio-HPP and 1.075 ± 0.24 μm for Zirconia. Both surface profiles presented a smooth characteristic regardless the measurement axis. The stress peaks from implant fixture and screw were not affected by the abutment material, however the high performance polymer showed the highest stress magnitude for the abutment region. Conclusions: Comparing the present results with the literature it is suggested that the CAD/CAM High Performance Polymer abutments present an adequate surface roughness with acceptable values of stress. Full article
Show Figures

Figure 1

31 pages, 7504 KiB  
Review
Recent Advances in High Performance Polymers—Tribological Aspects
by Abdulaziz Kurdi and Li Chang
Lubricants 2019, 7(1), 2; https://doi.org/10.3390/lubricants7010002 - 31 Dec 2018
Cited by 60 | Viewed by 8594
Abstract
High-performance polymer (HPP)-based engineering materials in tribological applications have been under continuous research over the last few decades. This paper reviewed the recent studies on the sliding wear properties of HPPs and their nanocomposites, which are associated with the intrinsic and extrinsic parameters. [...] Read more.
High-performance polymer (HPP)-based engineering materials in tribological applications have been under continuous research over the last few decades. This paper reviewed the recent studies on the sliding wear properties of HPPs and their nanocomposites, which are associated with the intrinsic and extrinsic parameters. In particular, the effects of the intrinsic properties of polymer composites (e.g., mechanical properties of the materials and the types of fillers) and external environmental conditions (e.g., service temperature and lubrication medium) on the formation of transfer layers (TLs) were discussed. The latter would govern the overall friction and wear of polymeric materials in sliding against metallic counterparts. In addition, correlations between the basic mechanical properties of HPPs and their sliding wear behavior were also explored. Full article
(This article belongs to the Special Issue Advances in Polymer Tribology)
Show Figures

Figure 1

Back to TopTop