Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = high-intensity pulsed electric field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1541 KiB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

19 pages, 5119 KiB  
Article
Isolation of Bioactive Compounds and Antioxidant Activity Evaluation of Crataegus monogyna Leaves via Pulsed Electric Field-Assisted Extraction
by Vasiliki Papazidou, Ioannis Makrygiannis, Martha Mantiniotou, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Plants 2025, 14(15), 2262; https://doi.org/10.3390/plants14152262 - 22 Jul 2025
Viewed by 376
Abstract
Crataegus monogyna, commonly known as hawthorn, is a valuable plant in pharmaceutical production. Its flowers, leaves, and fruits are rich in antioxidants. This study explores the application of pulsed electric field (PEF) for enhanced extraction of bioactive compounds from C. monogyna leaves. [...] Read more.
Crataegus monogyna, commonly known as hawthorn, is a valuable plant in pharmaceutical production. Its flowers, leaves, and fruits are rich in antioxidants. This study explores the application of pulsed electric field (PEF) for enhanced extraction of bioactive compounds from C. monogyna leaves. The liquid-to-solid ratio, solvent composition (ethanol, water, and 50% v/v aqueous ethanol), and key PEF parameters—including pulse duration, pulse period, electric field intensity, and treatment duration—were investigated during the optimization process. To determine the optimal extraction conditions and their impact on antioxidant activity, response surface methodology (RSM) with a six-factor design was employed. The total polyphenol content in the optimized extract was 244 mg gallic acid equivalents/g dry weight, while individual polyphenols were analyzed using high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Furthermore, antioxidant activity was assessed using ferric-reducing antioxidant power (FRAP) and DPPH radical scavenging assays, yielding values of 3235 and 1850 μmol ascorbic acid equivalents/g dry weight, respectively. Additionally, correlation analyses were conducted to evaluate the interactions between bioactive compounds and antioxidant capacity. Compared to other extraction techniques, PEF stands out as an eco-friendly, non-thermal standalone method, offering a sustainable approach for the rapid production of health-promoting extracts from C. monogyna leaves. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
High-Energy Electron Emission Controlled by Initial Phase in Linearly Polarized Ultra-Intense Laser Fields
by Xinru Zhong, Yiwei Zhou and Youwei Tian
Appl. Sci. 2025, 15(13), 7453; https://doi.org/10.3390/app15137453 - 2 Jul 2025
Viewed by 312
Abstract
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our [...] Read more.
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our research, we have found that phase variation from 0 to 2π induces an angular bifurcation of peak radiation intensity, generating polarization-aligned symmetric lobes with azimuthal invariance. Furthermore, the bimodal polar angle decreases with the increase of the initial energy. This phase-controllable bimodal distribution provides a new solution for far-field beam shaping. Significantly, high-harmonic intensity demonstrates π-periodic phase-dependent modulation. Meanwhile, the time-domain pulse width also exhibits 2π-cycle modulation, which is synchronized with the laser electric field period. Notably, electron energy increase enhances laser pulse peak intensity while compressing its duration. The above findings demonstrate that the precise control of the driving laser’s initial phase enables effective manipulation of the radiation’s spatial characteristics. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Effects of Moderate Electric Field Pretreatment on the Efficiency and Nutritional Quality of Hot Air-Dried Apple Slices
by Deryanur Kalkavan and Nese Sahin Yesilcubuk
Foods 2025, 14(13), 2160; https://doi.org/10.3390/foods14132160 - 20 Jun 2025
Viewed by 352
Abstract
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene [...] Read more.
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene content, and hydroxymethylfurfural (HMF) formation. Electric-field-treated samples were compared to untreated controls after convective drying at 75 °C. Results revealed that vitamin C was significantly influenced by waveform, with sinusoidal waves preserving about 27% more vitamin C than square waves, likely due to reduced oxidative degradation from gentler electroporation. Conversely, square waves caused the highest β-carotene losses (25% vs. control), attributed to prolonged peak voltage destabilizing carotenoids. HMF formation was reduced by 10–23% in electric-field-treated samples compared to controls, linked to accelerated drying rates limiting Maillard reaction time. Low electric field strengths (0.1–0.15 kV/cm) enhanced antioxidant activity; however, higher intensities showed a potential decline. The square waveform had a more detrimental effect on phenolic compounds than the sinusoidal waveform. These findings suggest that low electric field pretreatment, particularly with sinusoidal waveforms at 0.2 kV/cm, enhances drying efficiency while balancing nutrient retention and HMF mitigation, offering a promising strategy for producing high-quality dried fruits. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 5997 KiB  
Article
Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors
by Baichuan Zhang, Libin Gao, Hongwei Chen and Jihua Zhang
Nanomaterials 2025, 15(11), 819; https://doi.org/10.3390/nano15110819 - 28 May 2025
Viewed by 418
Abstract
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through [...] Read more.
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through anodic oxidation. After undergoing high-temperature thermal oxidation, a monolithic Ni-NiO-Pt metal–insulator–metal (MIM) capacitor with a nanoporous dielectric architecture is achieved. Structurally, this innovative design brings about several remarkable benefits. Due to the nanoporous structure, it has a significantly increased surface area, which can effectively store more charges. As a result, it exhibits an equivalent capacitance density of 69.95 nF/cm2, which is approximately 18 times higher than that of its planar, non-porous counterpart. This high capacitance density enables it to store more electrical energy in a given volume, making it highly suitable for applications where miniaturization and high energy storage in a small space is crucial. The second type of capacitor makes use of Through-Glass Via (TGV) technology. This technology is employed to create an interdigitated blind-via array within a glass substrate, attaining an impressively high aspect ratio of 22.5:1 (with a via diameter of 20 μm and a depth of 450 μm). By integrating atomic layer deposition (ALD), a conformal interdigital electrode structure is realized. Glass, as a key material in this capacitor, has outstanding insulating properties. This characteristic endows the capacitor with a high breakdown field strength exceeding 8.2 MV/cm, corresponding to a withstand voltage of 5000 V. High breakdown field strength and withstand voltage mean that the capacitor can handle high-voltage applications without breaking down easily, which is essential for power-intensive systems like high-voltage power supplies and some high-power pulse-generating equipment. Moreover, due to the low-loss property of glass, the capacitor can achieve an energy conversion efficiency of up to 95%. Such a high energy conversion efficiency ensures that less energy is wasted during the charge–discharge process, which is highly beneficial for energy-saving applications and systems that require high-efficiency energy utilization. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

46 pages, 5182 KiB  
Review
Current Research in Drug-Free Cancer Therapies
by Akshaya Andavar, Varsha Rajesh Bhagavathi, Justine Cousin, Nirvi Parekh, Zahra Sadat Razavi and Bo Tan
Bioengineering 2025, 12(4), 341; https://doi.org/10.3390/bioengineering12040341 - 26 Mar 2025
Cited by 4 | Viewed by 1367
Abstract
Cancer treatment has historically depended on conventional methods like chemotherapy, radiation, and surgery; however, these strategies frequently present considerable limitations, including toxicity, resistance, and negative impacts on healthy tissues. In addressing these challenges, drug-free cancer therapies have developed as viable alternatives, utilizing advanced [...] Read more.
Cancer treatment has historically depended on conventional methods like chemotherapy, radiation, and surgery; however, these strategies frequently present considerable limitations, including toxicity, resistance, and negative impacts on healthy tissues. In addressing these challenges, drug-free cancer therapies have developed as viable alternatives, utilizing advanced physical and biological methods to specifically target tumor cells while reducing damage to normal tissues. This review examines several drug-free cancer treatment strategies, such as high-intensity focused energy beams, nanosecond pulsed electric fields, and photothermal therapy as well as the use of inorganic nanoparticles to promote selective apoptosis. We also investigate the significance of targeting the tumor microenvironment, precision medicine, and immunotherapy in the progression of personalized cancer therapies. Although these approaches demonstrate significant promise, challenges including scalability, safety, and regulatory obstacles must be resolved for clinical application. This paper presents an overview of current research in drug-free cancer therapies, emphasizing recent advancements, underlying scientific principles, and the steps required for clinical implementation. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

13 pages, 1929 KiB  
Article
An Approach to Nuclear Fusion Utilizing the Dynamics of High-Density Electrons and Neutrals, Part I
by Alfred YiuFai Wong and Chun-Ching Shih
Plasma 2025, 8(1), 4; https://doi.org/10.3390/plasma8010004 - 31 Jan 2025
Viewed by 1665
Abstract
An approach to achieve nuclear fusion utilizing the formation of high densities of electrons and neutrals is described. The abundance of low energy free electrons produces intense electric fields that reduce the Coulomb barrier in nuclear fusion. Meanwhile, high-density rotating neutrals provide high [...] Read more.
An approach to achieve nuclear fusion utilizing the formation of high densities of electrons and neutrals is described. The abundance of low energy free electrons produces intense electric fields that reduce the Coulomb barrier in nuclear fusion. Meanwhile, high-density rotating neutrals provide high centrifugal forces to achieve the extreme pressure gradients of electrons and consequent negative electric fields to reduce the ion repulsive Coulombic fields. These high-density neutrals also provide better stability and higher reaction rates. Ion–neutral coupling is responsible for the control of neutral dynamics. Since high-frequency excitations favor the generation of free electrons, pulsed operations are recommended to achieve fusion with higher gains. Full article
Show Figures

Figure 1

16 pages, 27934 KiB  
Article
The Study on the Propagation of a Driving Laser Through Gas Target Using a Neural Network: Interaction of Intense Laser with Atoms
by Xinyu Wang, Yuanyuan Qiu, Yue Qiao, Fuming Guo, Jun Wang, Gao Chen, Jigen Chen and Yujun Yang
Symmetry 2024, 16(12), 1670; https://doi.org/10.3390/sym16121670 - 17 Dec 2024
Viewed by 933
Abstract
High-order harmonic generation is one of the ways to generate attosecond ultra-short pulses. In order to accurately simulate the high-order harmonic emission, it is necessary to perform fast and accurate calculations on the interaction between the atoms and strong laser fields. The accurate [...] Read more.
High-order harmonic generation is one of the ways to generate attosecond ultra-short pulses. In order to accurately simulate the high-order harmonic emission, it is necessary to perform fast and accurate calculations on the interaction between the atoms and strong laser fields. The accurate profile of the laser field is obtained from the propagation through the gas target. Under the conditions of longer wavelength driving lasers and higher gas densities, the calculation of the laser field becomes more challenging. In this paper, we utilize the driving laser electric field information obtained from numerically solving the three-dimensional Maxwell’s equations as data for machine learning, enabling the prediction of the propagation process of intense laser fields using an artificial neural network. It is found that the simulation based on frequency domain can improve the accuracy of electric field by two orders of magnitude compared with the simulation directly from time domain. On this basis, the feasibility of the transfer learning scheme for laser field prediction is further studied. This study lays a foundation for the rapid and accurate simulation of the interaction between intense laser and matter by using an artificial neural network scheme. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 5079 KiB  
Review
Advances in Design and Fabrication of Micro-Structured Solid Targets for High-Power Laser-Matter Interaction
by Florin Jipa, Laura Ionel and Marian Zamfirescu
Photonics 2024, 11(11), 1008; https://doi.org/10.3390/photonics11111008 - 25 Oct 2024
Viewed by 1408
Abstract
Accelerated particles have multiple applications in materials research, medicine, and the space industry. In contrast to classical particle accelerators, laser-driven acceleration at intensities greater than 1018 W/cm2, currently achieved at TW and PW laser facilities, allow for much larger electric [...] Read more.
Accelerated particles have multiple applications in materials research, medicine, and the space industry. In contrast to classical particle accelerators, laser-driven acceleration at intensities greater than 1018 W/cm2, currently achieved at TW and PW laser facilities, allow for much larger electric field gradients at the laser focus point, several orders of magnitude higher than those found in conventional kilometer-sized accelerators. It has been demonstrated that target design becomes an important factor to consider in ultra-intense laser experiments. The energetic and spatial distribution of the accelerated particles strongly depends on the target configuration. Therefore, target engineering is one of the key approaches to optimizing energy transfer from the laser to the accelerated particles. This paper provides an overview of recent progress in 2D and 3D micro-structured solid targets, with an emphasis on fabrication procedures based on laser material processing. Recently, 3D laser lithography, which involves Two-Photon Absorption (TPA) effects in photopolymers, has been proposed as a technique for the high-resolution fabrication of 3D micro-structured targets. Additionally, laser surface nano-patterning followed by the replication of the patterns through molding, has been proposed and could become a cost-effective and reliable solution for intense laser experiments at high repetition rates. Recent works on numerical simulations have also been presented. Using particle-in-cell (PIC) simulation software, the importance of structured micro-target design in the energy absorption process of intense laser pulses—producing localized extreme temperatures and pressures—was demonstrated. Besides PIC simulations, the Finite-Difference Time-Domain (FDTD) numerical method offers the possibility to generate the specific data necessary for defining solid target material properties and designing their optical geometries with high accuracy. The prospects for the design and technological fabrication of 3D targets for ultra-intense laser facilities are also highlighted. Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
Show Figures

Figure 1

17 pages, 3338 KiB  
Article
Impact of Various Extraction Technologies on Protein and Chlorophyll Yield from Stinging Nettle
by Simon Dirr and Özlem Özmutlu Karslioglu
Foods 2024, 13(20), 3318; https://doi.org/10.3390/foods13203318 - 18 Oct 2024
Cited by 2 | Viewed by 1479
Abstract
Stinging nettle (Urtica dioica L.) has gained attention as a sustainable protein source due to its rich bioactive compound profile and medicinal properties, but research on optimizing its protein extraction remains limited. This research explores various cell disruption methods, including pulsed electric [...] Read more.
Stinging nettle (Urtica dioica L.) has gained attention as a sustainable protein source due to its rich bioactive compound profile and medicinal properties, but research on optimizing its protein extraction remains limited. This research explores various cell disruption methods, including pulsed electric fields and high-pressure homogenization, combined with extraction techniques like isoelectric precipitation, ultrafiltration, and salting-out, to enhance protein yield and assess its impact on chlorophyll content. The findings indicate that high-pressure homogenization combined with isoelectric precipitation achieved the highest protein yield of 11.60%, while pulsed electric fields with ultrafiltration significantly reduced chlorophyll content from 4781.41 µg/g in raw leaves to 15.07 µg/g in the processed sample. Additionally, the findings suggest that innovative extraction technologies can improve the efficiency and sustainability of protein isolation from stinging nettle, offering a valuable addition to the repertoire of alternative protein sources. These advancements could pave the way for broader applications of stinging nettle in food fortification and functional ingredient development. Full article
(This article belongs to the Special Issue New Methods in Food Processing and Analysis)
Show Figures

Figure 1

23 pages, 7024 KiB  
Article
Investigation of High Frequency Irreversible Electroporation for Canine Spontaneous Primary Lung Tumor Ablation
by Alayna N. Hay, Kenneth N. Aycock, Melvin F. Lorenzo, Kailee David, Sheryl Coutermarsh-Ott, Zaid Salameh, Sabrina N. Campelo, Julio P. Arroyo, Brittany Ciepluch, Gregory Daniel, Rafael V. Davalos and Joanne Tuohy
Biomedicines 2024, 12(9), 2038; https://doi.org/10.3390/biomedicines12092038 - 7 Sep 2024
Cited by 5 | Viewed by 2201
Abstract
In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating [...] Read more.
In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating nanopores in cell membranes and rendering targeted cells nonviable. In the current study, canine patients (n = 5) with primary lung tumors underwent H-FIRE treatment with an applied voltage of 2250 V using a 2-5-2 µs H-FIRE waveform to achieve partial tumor ablation prior to the surgical resection of the primary tumor. Surgically resected tumor samples were evaluated histologically for tumor ablation, and with immunohistochemical (IHC) staining to identify cell death (activated caspase-3) and macrophages (IBA-1, CD206, and iNOS). Changes in immunity and inflammatory gene signatures were also evaluated in tumor samples. H-FIRE ablation was evident by the microscopic observation of discrete foci of acute hemorrhage and necrosis, and in a subset of tumors (n = 2), we observed a greater intensity of cleaved caspase-3 staining in tumor cells within treated tumor regions compared to adjacent untreated tumor tissue. At the study evaluation timepoint of 2 h post H-FIRE, we observed differential gene expression changes in the genes IDO1, IL6, TNF, CD209, and FOXP3 in treated tumor regions relative to paired untreated tumor regions. Additionally, we preliminarily evaluated the technical feasibility of delivering H-FIRE percutaneously under CT guidance to canine lung tumor patients (n = 2). Overall, H-FIRE treatment was well tolerated with no adverse clinical events, and our results suggest H-FIRE potentially altered the tumor immune microenvironment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 17980 KiB  
Article
Integrated Optical Waveguide Electric Field Sensors Based on Bismuth Germanate
by Jin Wang, Yilin Song, Xuefei Song, Wei Zhang, Junqi Yang and Zhi Xuan
Sensors 2024, 24(17), 5570; https://doi.org/10.3390/s24175570 - 28 Aug 2024
Cited by 1 | Viewed by 1307
Abstract
Bismuth germanate (Bi4Ge3O12, BGO) is a widely used optical sensing material with a high electro-optic coefficient, ideal for optical electric field sensors. Achieving high precision in electric field sensing requires fabricating optical waveguides on BGO. Traditional waveguide [...] Read more.
Bismuth germanate (Bi4Ge3O12, BGO) is a widely used optical sensing material with a high electro-optic coefficient, ideal for optical electric field sensors. Achieving high precision in electric field sensing requires fabricating optical waveguides on BGO. Traditional waveguide writing methods face challenges with this material. This study explores using femtosecond laser writing technology for preparing waveguides on BGO, leveraging ultrafast optical fields for superior material modification. Our experimental analysis shows that a cladding-type waveguide, written with a femtosecond laser at 200 kHz repetition frequency and 10.15 mW average power (pulse energy of 50.8 nJ), exhibits excellent light-guiding characteristics. Simulations of near-field optical intensity distribution and refractive index variations using the refractive index reconstruction method demonstrate that the refractive index modulation ensures single-mode transmission and effectively confines light to the core layer. In situ refractive index characterization confirms the feasibility of fabricating a waveguide with a refractive index reduction on BGO. The resulting waveguide has a loss per unit length of approximately 1.2 dB/cm, marking a successful fabrication. Additionally, we design an antenna electrode, analyze sensor performance indicators, and integrate a preparation process plan for the antenna electrode. This achievement establishes a solid experimental foundation for future studies on BGO crystal waveguides in electric field measurement applications. Full article
(This article belongs to the Special Issue Recent Advances of Optoelectronic Devices and Semiconductor Sensors)
Show Figures

Figure 1

17 pages, 8711 KiB  
Article
Numerical Investigations into the Homogenization Effect of Nonlinear Composite Materials on the Pulsed Electric Field
by Jiawei Wang, Minyu Mao, Jinghui Shao and Xikui Ma
Energies 2024, 17(17), 4252; https://doi.org/10.3390/en17174252 - 26 Aug 2024
Viewed by 889
Abstract
Pulsed power equipment is often characterized by high energy density and field intensity. In the presence of strong electric field intensity, charge accumulation within insulators exacerbates electric field non-uniformity, leading to potential insulation breakdown, thereby posing a significant threat to the safe operation [...] Read more.
Pulsed power equipment is often characterized by high energy density and field intensity. In the presence of strong electric field intensity, charge accumulation within insulators exacerbates electric field non-uniformity, leading to potential insulation breakdown, thereby posing a significant threat to the safe operation of pulsed power equipment. In this manuscript, we introduce nonlinear composite materials with field-dependent conductivity and permittivity to adaptively regulate the distribution of the pulsed electric field in insulation equipment. Finite-element modeling and analysis of the needle-plate electrodes and high-voltage bushing are carried out to comprehensively investigate the non-uniformity of the distribution of the electric field and the homogenization effect of various nonlinear materials in the presence of pulsed excitations of different timescales. Numerical results indicate that the involvement of nonlinear composite materials significantly improves the electric field distribution under pulse excitations. In addition, variations in the rising time of the pulses affect the maximum electric field intensity within the insulators considerably, but for pulses of nanosecond and microsecond scales, the tendencies are the opposite. Finally, via the simulations of the bushing, we illustrate that some measures proposed for improving the uniformity of the electric field under low frequencies, e.g., increasing the length of the electric field equalization layer and the distance of the underside of the electric field equalization layer from the grounding screen, are still effective for the homogenization of pulsed electric field. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

29 pages, 7614 KiB  
Review
Advancements in Non-Thermal Processing Technologies for Enhancing Safety and Quality of Infant and Baby Food Products: A Review
by Nasim Pasdar, Parisa Mostashari, Ralf Greiner, Anissa Khelfa, Ali Rashidinejad, Hadi Eshpari, Jim M. Vale, Seyed Mohammad Taghi Gharibzahedi and Shahin Roohinejad
Foods 2024, 13(17), 2659; https://doi.org/10.3390/foods13172659 - 23 Aug 2024
Cited by 8 | Viewed by 4509
Abstract
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential [...] Read more.
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential physical, biological, and chemical hazards. Although thermal treatments are commonly used to ensure food safety in IFs and BFs, they can negatively affect sensory qualities, reduce thermosensitive nutrients, and lead to chemical contaminant formation. To address these challenges, non-thermal processing technologies such as high-pressure processing, pulsed electric fields, radio frequency, and ultrasound offer efficient pathogen destruction similar to traditional thermal methods, while reducing the production of key process-induced toxicants such as furan and 5-hydroxymethyl-2-furfural (HMF). These alternative thermal processes aim to overcome the drawbacks of traditional methods while retaining their advantages. This review paper highlights the growing global demand for healthy, sustainable foods, driving food manufacturers to adopt innovative and efficient processing techniques for both IFs and BFs. Based on various studies reviewed for this work, the application of these novel technologies appears to reduce thermal processing intensity, resulting in products with enhanced sensory properties, comparable shelf life, and improved visual appeal compared to conventionally processed products. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

13 pages, 6001 KiB  
Article
In Vitro Assay Development to Study Pulse Field Ablation Outcome Using Solanum Tuberosum
by Akshay Narkar, Abouzar Kaboudian, Yasaman Ardeshirpour, Maura Casciola, Tromondae K. Feaster and Ksenia Blinova
Int. J. Mol. Sci. 2024, 25(16), 8967; https://doi.org/10.3390/ijms25168967 - 17 Aug 2024
Cited by 2 | Viewed by 1977
Abstract
Exposing cells to intense and brief electric field pulses can modulate cell permeability, a phenomenon termed electroporation. When applied in medical treatments of diseases like cancer and cardiac arrhythmias, depending on level of cellular destruction, it is also referred to as irreversible electroporation [...] Read more.
Exposing cells to intense and brief electric field pulses can modulate cell permeability, a phenomenon termed electroporation. When applied in medical treatments of diseases like cancer and cardiac arrhythmias, depending on level of cellular destruction, it is also referred to as irreversible electroporation (IRE) or Pulsed Field Ablation (PFA). For ablation device testing, several pulse parameters need to be characterized in a comprehensive manner to assess lesion boundary and efficacy. Overly aggressive voltages and application numbers increase animal burden. The potato tuber is a widely used initial model for the early testing of electroporation. The aim of this study is to characterize and refine bench testing for the ablation outcomes of PFA in this simplistic vegetal model. For in vitro assays, several pulse parameters like voltage, duration, and frequency were modulated to study effects not only on 2D ablation area but also 3D depth and volume. As PFA is a relatively new technology with minimal thermal effects, we also measured temperature changes before, during, and after ablation. Data from experiments were supplemented with in silico modeling to examine E-field distribution. We have estimated the irreversible electroporation threshold in Solanum Tuberosum to be at 240 V/cm. This bench testing platform can screen several pulse recipes at early stages of PFA device development in a rapid and high-throughput manner before proceeding to laborious trials for IRE medical devices. Full article
(This article belongs to the Special Issue Heart Failure: From Molecular Basis to Therapeutic Strategies)
Show Figures

Figure 1

Back to TopTop