Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,863)

Search Parameters:
Keywords = high-energy dynamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

22 pages, 25395 KiB  
Article
Hot Deformation and Predictive Modelling of β-Ti-15Mo Alloy: Linking Flow Stress, ω-Phase Evolution, and Thermomechanical Behaviour
by Arthur de Bribean Guerra, Alberto Moreira Jorge Junior, Guilherme Yuuki Koga and Claudemiro Bolfarini
Metals 2025, 15(8), 877; https://doi.org/10.3390/met15080877 (registering DOI) - 6 Aug 2025
Abstract
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates [...] Read more.
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates of 0.17, 1.72, and 17.2 s1 to assess the material’s response under industrially relevant hot working conditions. The alloy showed significant sensitivity to temperature and strain rate, with dynamic recovery (DRV) and dynamic recrystallisation (DRX) dominating the softening behaviour depending on the conditions. A strain-compensated Arrhenius-type constitutive model was developed and validated, resulting in an apparent activation energy of approximately 234 kJ/mol. Zener–Hollomon parameter analysis confirmed a transition in deformation mechanisms. Although microstructural and diffraction data suggest possible contributions from nanoscale phase transformations, including ω-phase dissolution at high temperatures, these aspects remain to be fully elucidated. The model offers reliable predictions of flow behaviour and supports optimisation of thermomechanical processing routes for biomedical β-Ti alloys. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Graphical abstract

13 pages, 2130 KiB  
Article
Controllable Structure and Fluorescence Enhancement of ACQ Dye Nanoparticles Based on the FNP Process
by Yue Wu, Yutao Zhang, Zhiqian Guo and Yisheng Xu
Polymers 2025, 17(15), 2152; https://doi.org/10.3390/polym17152152 - 6 Aug 2025
Abstract
Fluorescent dyes, such as cyanine dyes, are widely used in fluorescence-imaging-guided tumor therapy due to their high absorbance and fluorescence quantum yield. However, challenges persist in optimizing the performance of fluorescent nanoparticles, particularly due to the aggregation-caused quenching (ACQ) effect of cyanine dyes. [...] Read more.
Fluorescent dyes, such as cyanine dyes, are widely used in fluorescence-imaging-guided tumor therapy due to their high absorbance and fluorescence quantum yield. However, challenges persist in optimizing the performance of fluorescent nanoparticles, particularly due to the aggregation-caused quenching (ACQ) effect of cyanine dyes. Here, a novel counterion construction strategy is introduced using cyanine dye as a model ACQ dye. Through dynamic-controlled flash nanoprecipitation, fluorescent nanoparticles (CyINPs) with tunable structures are developed, investigating the effects of various factors, including counterions, block copolymers, and dye concentrations, on CyINPs’ stability and fluorescence enhancement. The optimized CyINPs with good water solubility show a 21-fold increase in fluorescence intensity and a 3.5-fold increase in encapsulation efficiency compared to CyINPs prepared by a thermodynamic-driven method. Under the efforts of polymers and counterions, dyes are separated, which reduces the impact of the ACQ effect and results in stronger fluorescence intensity, providing insights into improving nanoparticle biocompatibility and energy utilization efficiency. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

38 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 2093 KiB  
Article
Parameter Identification Method of Grid-Forming Static Var Generator Based on Trajectory Sensitivity and Proximal Policy Optimization Algorithm
by Yufei Teng, Peng Shi, Jiayu Bai, Xi Wang, Ziyuan Shao, Tian Cao, Xianglian Guan and Zongsheng Zheng
Electronics 2025, 14(15), 3119; https://doi.org/10.3390/electronics14153119 - 5 Aug 2025
Abstract
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which [...] Read more.
As the penetration rate of new energy continues to increase, the active voltage support capability of the power system is decreasing. The grid-forming static var generator (GFM-SVG) features the advantages of fast dynamic response, strong reactive power support, and high overload capacity, which play an important role in maintaining voltage stability. However, the parameters of the GFM-SVG are often unknown due to trade secret reasons. Meanwhile, the parameters may be changed during the long-term operation of the system, which brings challenges to the system stability analysis and control. Aiming at this problem, a parameter identification method based on trajectory sensitivity analysis and the proximal policy optimization (PPO) algorithm is proposed in this paper. Firstly, through trajectory sensitivity analysis, the key influential parameters on the output characteristics of the GFM-SVG can be selected, which can reduce the dimensionality of the identification parameters and improve the identification efficiency. Then, a parameter identification framework based on the PPO algorithm is constructed for GFM-SVGs, which utilizes its adaptive learning capability to achieve accurate identification of the key parameters of the system. Finally, the effectiveness of the proposed parameter identification method is verified through simulation examples. The simulation results show that the identification error of the parameters in the GFM-SVG is small. The proposed method can characterize the output response of the GFM-SVG under different operating conditions. Full article
Show Figures

Figure 1

31 pages, 5644 KiB  
Article
Mitigation Technique Using a Hybrid Energy Storage and Time-of-Use (TOU) Approach in Photovoltaic Grid Connection
by Mohammad Reza Maghami, Jagadeesh Pasupuleti, Arthur G. O. Mutambara and Janaka Ekanayake
Technologies 2025, 13(8), 339; https://doi.org/10.3390/technologies13080339 - 5 Aug 2025
Abstract
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a [...] Read more.
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a pair of 132/11 kV, 15 MVA transformers, supplying a total load of 20.006 MVA. Each node is integrated with a 100 kW PV system, enabling up to 100% PV penetration scenarios. A hybrid mitigation strategy combining TOU-based load shifting and BESS was implemented to address voltage violations occurring, particularly during low-load night hours. Dynamic simulations using DIgSILENT PowerFactory were conducted under worst-case (no load and peak load) conditions. The novelty of this research is the use of real rural network data to validate a hybrid BESS–TOU strategy, supported by detailed sensitivity analysis across PV penetration levels. This provides practical voltage stabilization insights not shown in earlier studies. Results show that at 100% PV penetration, TOU or BESS alone are insufficient to fully mitigate voltage drops. However, a hybrid application of 0.4 MWh BESS with 20% TOU load shifting eliminates voltage violations across all nodes, raising the minimum voltage from 0.924 p.u. to 0.951 p.u. while reducing active power losses and grid dependency. A sensitivity analysis further reveals that a 60% PV penetration can be supported reliably using only 0.4 MWh of BESS and 10% TOU. Beyond this, hybrid mitigation becomes essential to maintain stability. The proposed solution demonstrates a scalable approach to enable large-scale PV integration in dense rural grids and addresses the specific operational characteristics of Malaysian networks, which differ from commonly studied IEEE test systems. This work fills a critical research gap by using real local data to propose and validate practical voltage mitigation strategies. Full article
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 5322 KiB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

20 pages, 3248 KiB  
Article
Experimental Study on the Hydrodynamic Analysis of a Floating Offshore Wind Turbine Under Focused Wave Conditions
by Hanbo Zhai, Chaojun Yan, Wei Shi, Lixian Zhang, Xinmeng Zeng, Xu Han and Constantine Michailides
Energies 2025, 18(15), 4140; https://doi.org/10.3390/en18154140 - 5 Aug 2025
Abstract
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, [...] Read more.
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, under regular, irregular, and focused wave conditions. The tests were conducted under regular, irregular, and focused wave conditions. The results show that, under both regular and irregular wave conditions, the platform’s motion and mooring tension increased as the wave period became longer, indicating a greater energy transfer and stronger coupling effects at lower wave frequencies. Specifically, in irregular seas, mooring tension increased by 16% between moderate and high sea states, with pronounced surge–pitch coupling near the natural frequency. Under focused wave conditions, the platform experienced significant surge displacement due to the impact of large wave crests, followed by free-decay behavior. Meanwhile, the pitch amplitude increased by up to 27%, and mooring line tension rose by 16% as the wave steepness intensified. These findings provide valuable insights for the design and optimization of FOWTs in complex marine environments, particularly under extreme wave conditions. Additionally, they contribute to the refinement of relevant numerical simulation methods. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Back to TopTop