Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,268)

Search Parameters:
Keywords = high-SNR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8858 KiB  
Article
Compressed Sensing Reconstruction with Zero-Shot Self-Supervised Learning for High-Resolution MRI of Human Embryos
by Kazuma Iwazaki, Naoto Fujita, Shigehito Yamada and Yasuhiko Terada
Tomography 2025, 11(8), 88; https://doi.org/10.3390/tomography11080088 (registering DOI) - 2 Aug 2025
Abstract
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were [...] Read more.
Objectives: This study investigates whether scan time in the high-resolution magnetic resonance imaging (MRI) of human embryos can be reduced without compromising spatial resolution by applying zero-shot self-supervised learning (ZS-SSL), a deep-learning-based reconstruction method. Methods: Simulations using a numerical phantom were conducted to evaluate spatial resolution across various acceleration factors (AF = 2, 4, 6, and 8) and signal-to-noise ratio (SNR) levels. Resolution was quantified using a blur-based estimation method based on the Sparrow criterion. ZS-SSL was compared to conventional compressed sensing (CS). Experimental imaging of a human embryo at Carnegie stage 21 was performed at a spatial resolution of (30 μm)3 using both retrospective and prospective undersampling at AF = 4 and 8. Results: ZS-SSL preserved spatial resolution more effectively than CS at low SNRs. At AF = 4, image quality was comparable to that of fully sampled data, while noticeable degradation occurred at AF = 8. Experimental validation confirmed these findings, with clear visualization of anatomical structures—such as the accessory nerve—at AF = 4; there was reduced structural clarity at AF = 8. Conclusions: ZS-SSL enables significant scan time reduction in high-resolution MRI of human embryos while maintaining spatial resolution at AF = 4, assuming an SNR above approximately 15. This trade-off between acceleration and image quality is particularly beneficial in studies with limited imaging time or specimen availability. The method facilitates the efficient acquisition of ultra-high-resolution data and supports future efforts to construct detailed developmental atlases. Full article
Show Figures

Figure 1

26 pages, 3787 KiB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 (registering DOI) - 1 Aug 2025
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
27 pages, 11177 KiB  
Article
Robust Segmentation of Lung Proton and Hyperpolarized Gas MRI with Vision Transformers and CNNs: A Comparative Analysis of Performance Under Artificial Noise
by Ramtin Babaeipour, Matthew S. Fox, Grace Parraga and Alexei Ouriadov
Bioengineering 2025, 12(8), 808; https://doi.org/10.3390/bioengineering12080808 - 28 Jul 2025
Viewed by 262
Abstract
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional [...] Read more.
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional segmentation algorithms. This study evaluates the robustness of deep learning segmentation models under varying Gaussian noise levels, comparing traditional convolutional neural networks (CNNs) with modern Vision Transformer (ViT)-based models. Using a dataset of proton and hyperpolarized gas MRI slices from 56 participants, we trained and tested Feature Pyramid Network (FPN) and U-Net architectures with both CNN (VGG16, VGG19, ResNet152) and ViT (MiT-B0, B3, B5) backbones. Results showed that ViT-based models, particularly those using the SegFormer backbone, consistently outperformed CNN-based counterparts across all metrics and noise levels. The performance gap was especially pronounced in high-noise conditions, where transformer models retained higher Dice scores and lower boundary errors. These findings highlight the potential of ViT-based architectures for deployment in clinically realistic, low-SNR environments such as hyperpolarized gas MRI, where segmentation reliability is critical. Full article
Show Figures

Figure 1

32 pages, 18111 KiB  
Article
Across-Beam Signal Integration Approach with Ubiquitous Digital Array Radar for High-Speed Target Detection
by Le Wang, Haihong Tao, Aodi Yang, Fusen Yang, Xiaoyu Xu, Huihui Ma and Jia Su
Remote Sens. 2025, 17(15), 2597; https://doi.org/10.3390/rs17152597 - 25 Jul 2025
Viewed by 171
Abstract
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. [...] Read more.
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. Nevertheless, target motion introduces severe across-range unit (ARU), across-Doppler unit (ADU), and across-beam unit (ABU) effects, dispersing target energy across the range–Doppler-beam space. This paper proposes a beam domain angle rotation compensation and keystone-matched filtering (BARC-KTMF) algorithm to address the “three-crossing” challenge. This algorithm first corrects ABU by rotating beam–domain coordinates to align scattered energy into the final beam unit, reshaping the signal distribution pattern. Then, the KTMF method is utilized to focus target energy in the time-frequency domain. Furthermore, a special spatial windowing technique is developed to improve computational efficiency through parallel block processing. Simulation results show that the proposed approach achieves an excellent signal-to-noise ratio (SNR) gain over the typical single-beam and multi-beam long-time coherent integration (LTCI) methods under low SNR conditions. Additionally, the presented algorithm also has the capability of coarse estimation for the target incident angle. This work extends the LTCI technique to the beam domain, offering a robust framework for high-speed weak target detection. Full article
Show Figures

Figure 1

31 pages, 9977 KiB  
Article
Novel Deep Learning Framework for Evaporator Tube Leakage Estimation in Supercharged Boiler
by Yulong Xue, Dongliang Li, Yu Song, Shaojun Xia and Jingxing Wu
Energies 2025, 18(15), 3986; https://doi.org/10.3390/en18153986 - 25 Jul 2025
Viewed by 261
Abstract
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from [...] Read more.
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from noise. Additionally, the large number of monitoring parameters (approximately 140) poses a challenge for spatiotemporal feature extraction, feature decoupling, and establishing a mapping relationship between high-dimensional monitoring parameters and leakage, rendering the precise quantitative estimation of evaporation tube leakage extremely difficult. To address these issues, this study proposes a novel deep learning framework (LSTM-CNN–attention), combining a Long Short-Term Memory (LSTM) network with a dual-pathway spatial feature extraction structure (ACNN) that includes an attention mechanism(attention) and a 1D convolutional neural network (1D-CNN) parallel pathway. This framework processes temporal embeddings (LSTM-generated) via a dual-branch ACNN—where the 1D-CNN captures local spatial features and the attention models’ global significance—yielding decoupled representations that prevent cross-modal interference. This architecture is implemented in a simulated supercharged boiler, validated with datasets encompassing three operational conditions and 15 statuses in the supercharged boiler. The framework achieves an average diagnostic accuracy (ADA) of over 99%, an average estimation accuracy (AEA) exceeding 90%, and a maximum relative estimation error (MREE) of less than 20%. Even with a signal-to-noise ratio (SNR) of −4 dB, the ADA remains above 90%, while the AEA stays over 80%. This framework establishes a strong correlation between leakage and multifaceted characteristic parameters, moving beyond traditional threshold-based diagnostics to enable the early quantitative assessment of evaporator tube leakage. Full article
Show Figures

Figure 1

11 pages, 1428 KiB  
Article
High-Precision Time Delay Estimation Algorithm Based on Generalized Quadratic Cross-Correlation
by Menghao Sun, Ziang Niu, Xuzhen Zhu and Zijia Huang
Mathematics 2025, 13(15), 2397; https://doi.org/10.3390/math13152397 - 25 Jul 2025
Viewed by 179
Abstract
In UAV target localization, the accuracy of time delay estimation is the key to high-precision positioning. However, under low signal-to-noise ratio (SNR), time delay estimation suffers from serious secondary peak interference and low accuracy, which degrades the positioning accuracy. This paper proposes an [...] Read more.
In UAV target localization, the accuracy of time delay estimation is the key to high-precision positioning. However, under low signal-to-noise ratio (SNR), time delay estimation suffers from serious secondary peak interference and low accuracy, which degrades the positioning accuracy. This paper proposes an improved time delay estimation algorithm based on generalized quadratic cross-correlation. By introducing exponential operations and Hilbert difference operation, suppressing noise interference, and sharpening the peaks of the signal correlation function, the algorithm improves the estimation accuracy. Through simulation experiments comparing with the generalized cross-correlation and quadratic correlation algorithms, the results show that the improved algorithm enhances the peak of the cross-correlation function, improves the accuracy of estimation, and exhibits better anti-noise performance in low SNR environments, providing a new approach for high-precision time delay estimation in complex signal environments. Full article
Show Figures

Figure 1

12 pages, 24012 KiB  
Article
Iterative Fractional Doppler Shift and Channel Joint Estimation Algorithm for OTFS Systems in LEO Satellite Communication
by Xiaochen Lu, Lijian Sun and Guangliang Ren
Electronics 2025, 14(15), 2964; https://doi.org/10.3390/electronics14152964 - 24 Jul 2025
Viewed by 216
Abstract
An iterative fractional Doppler shift and channel joint estimation algorithm is proposed for orthogonal time frequency space (OTFS) satellite communication systems. In the algorithm, we search the strongest path and estimate its fractional Doppler offset, and compensate the Doppler shift to the nearest [...] Read more.
An iterative fractional Doppler shift and channel joint estimation algorithm is proposed for orthogonal time frequency space (OTFS) satellite communication systems. In the algorithm, we search the strongest path and estimate its fractional Doppler offset, and compensate the Doppler shift to the nearest integer to estimate the coefficient of the path. Then signal of the path and its inter-Doppler interference are reconstructed and canceled from the received data with these two estimated parameters. The estimation and cancel process are iteratively conducted until the strongest path in the remained paths is less than the predetermined threshold. The channel information can be reconstructed by the estimated parameters of the paths. The normalized mean squared error (NMSE) of the proposed channel estimation algorithm is less than 1/5 of the available algorithms at a high signal-to-noise ratio (SNR) region, and its BER has about 4dB SNR gain compared with those of the available algorithms when the bit error rate (BER) is 103. Full article
(This article belongs to the Special Issue Emerging Trends in Satellite Communication Networks)
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 283
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

23 pages, 13578 KiB  
Article
Cascaded Detection Method for Ship Targets Using High-Frequency Surface Wave Radar in the Time–Frequency Domain
by Zhiqing Yang, Hao Zhou, Yingwei Tian, Gan Liu, Bing Zhang, Yao Qin, Peng Li and Weimin Huang
Remote Sens. 2025, 17(15), 2580; https://doi.org/10.3390/rs17152580 - 24 Jul 2025
Viewed by 254
Abstract
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. [...] Read more.
Compact high-frequency surface wave radars (HFSWRs) utilize miniaturized antennas, resulting in lower antenna gain and a reduced signal-to-noise ratio (SNR) for target echoes. Due to noise interference, ship echoes in the noise region often fall below the detection threshold, leading to missed detections. To address this issue, this paper proposes a cascaded detection method in the time–frequency (TF) domain to improve ship detection performance under such conditions. First, TF features are extracted from TF representations of ship and noise signals. Supervised machine learning algorithms are then employed to distinguish targets from noise, reducing false alarms. Next, a non-constant false alarm rate (CFAR) threshold is computed based on the noise mean, standard deviation, and an adjustment factor to improve detection robustness. Experiments show that the classification accuracy between the ship and noise signals exceeds 99%, and the proposed method significantly outperforms the conventional CFAR and TF-domain CFAR in terms of detection performance. Full article
Show Figures

Figure 1

25 pages, 4610 KiB  
Article
A Directional Wave Spectrum Inversion Algorithm with HF Surface Wave Radar Network
by Fuqi Mo, Xiongbin Wu, Xiaoyan Li, Liang Yu and Heng Zhou
Remote Sens. 2025, 17(15), 2573; https://doi.org/10.3390/rs17152573 - 24 Jul 2025
Viewed by 144
Abstract
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is [...] Read more.
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is proposed with an empirical criterion for estimating the optimal regularization parameter, which minimizes the effect of noise to obtain more accurate inversion results. The reliability of the inversion method is preliminarily verified using simulated Doppler spectra under different wind speeds, wind directions, and SNRs. The directional wave spectra inverted from a radar network with two multiple-input multiple-output (MIMO) systems are basically consistent with those from the ERA5 data, while there is a limitation for the very concentrated directional distribution due to the truncated second order in the Fourier series. Further, in the field experiment during a storm that lasted three days, the wave parameters are calculated from the inverted directional spectra and compared with the ERA5 data. The results are shown to be in reasonable agreement at four typical locations in the core detection area. In addition, reasonable performance is also obtained under the condition of low SNRs, which further verifies the effectiveness of the proposed inversion algorithm. Full article
(This article belongs to the Special Issue Innovative Applications of HF Radar (Second Edition))
Show Figures

Figure 1

30 pages, 8089 KiB  
Article
KDFE: Robust KNN-Driven Fusion Estimator for LEO-SoOP Under Multi-Beam Phased-Array Dynamics
by Jiaqi Yin, Ruidan Luo, Xiao Chen, Linhui Zhao, Hong Yuan and Guang Yang
Remote Sens. 2025, 17(15), 2565; https://doi.org/10.3390/rs17152565 - 23 Jul 2025
Viewed by 214
Abstract
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered [...] Read more.
Accurate Doppler frequency estimation for Low Earth Orbit (LEO)-based Signals of Opportunity (SoOP) positioning faces significant challenges from extreme dynamics (±40 kHz Doppler shift, 0.4 Hz/ms fluctuation) and severe SNR fluctuations induced by multi-beam switching. Empirical analysis reveals that phased-array beamforming generates three-tiered SNR fluctuation patterns during unpredictable beam handovers, rendering conventional single-algorithm solutions fundamentally inadequate. To address this limitation, we propose KDFE (KNN-Driven Fusion Estimator)—an adaptive framework integrating the Rife–Vincent algorithm and MLE via intelligent switching. Global FFT processing extracts real-time Doppler-SNR parameter pairs, while a KNN-based arbiter dynamically selects the optimal estimator by: (1) Projecting parameter pairs into historical performance space, (2) Identifying the accuracy-optimal algorithm for current beam conditions, and (3) Executing real-time switching to balance accuracy and robustness. This decision model overcomes the accuracy-robustness trade-off by matching algorithmic strengths to beam-specific dynamics, ensuring optimal performance during abrupt SNR transitions and high Doppler rates. Both simulations and field tests demonstrate KDFE’s dual superiority: Doppler estimation errors were reduced by 26.3% (vs. Rife–Vincent) and 67.9% (vs. MLE), and 3D positioning accuracy improved by 13.6% (vs. Rife–Vincent) and 49.7% (vs. MLE). The study establishes a pioneering framework for adaptive LEO-SoOP positioning, delivering a methodological breakthrough for LEO navigation. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 202
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 2133 KiB  
Article
Effects of Chromatic Dispersion on BOTDA Sensor
by Qingwen Hou, Mingjun Kuang, Jindong Wang, Jianping Guo and Zhengjun Wei
Photonics 2025, 12(7), 726; https://doi.org/10.3390/photonics12070726 - 17 Jul 2025
Viewed by 203
Abstract
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically [...] Read more.
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically analyzed the dispersion-induced pulse broadening effect and its impact on the Brillouin gain spectrum (BGS). Numerical simulations revealed that dispersion leads to a moderate broadening of pump pulses, resulting in slight changes to BGS characteristics, including increased peak power and reduced linewidth. To explore the interplay between dispersion and nonlinearity, we built a gain-based BOTDA experimental system and tested two types of fibers, namely standard single-mode fiber (SMF) with anomalous dispersion and dispersion-compensating fiber (DCF) with normal dispersion. Experimental results show that SMF is more prone to modulation instability (MI), which significantly degrades the signal-to-noise ratio (SNR) of the BGS. In contrast, DCF effectively suppresses MI and provides a more stable Brillouin signal. Despite SMF exhibiting narrower BGS linewidths, DCF achieves a higher SNR, aligning with theoretical predictions. These findings highlight the importance of fiber dispersion properties in BOTDA design and suggest that using normally dispersive fibers like DCF can improve sensing performance in long-range, high-power applications. Full article
Show Figures

Figure 1

23 pages, 1187 KiB  
Article
Transmit and Receive Diversity in MIMO Quantum Communication for High-Fidelity Video Transmission
by Udara Jayasinghe, Prabhath Samarathunga, Thanuj Fernando and Anil Fernando
Algorithms 2025, 18(7), 436; https://doi.org/10.3390/a18070436 - 16 Jul 2025
Viewed by 210
Abstract
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity [...] Read more.
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity techniques to enhance robustness and efficiency in dynamic video transmission. The proposed method converts compressed videos into classical bitstreams, which are then channel-encoded and quantum-encoded into qubit superposition states. These states are transmitted over a 2×2 MIMO system employing varied diversity schemes to mitigate the effects of multipath fading and noise. At the receiver, a quantum decoder reconstructs the classical information, followed by channel decoding to retrieve the video data, and the source decoder reconstructs the final video. Simulation results demonstrate that the quantum MIMO system significantly outperforms equivalent-bandwidth classical MIMO frameworks across diverse signal-to-noise ratio (SNR) conditions, achieving a peak signal-to-noise ratio (PSNR) up to 39.12 dB, structural similarity index (SSIM) up to 0.9471, and video multi-method assessment fusion (VMAF) up to 92.47, with improved error resilience across various group of picture (GOP) formats, highlighting the potential of quantum MIMO communication for enhancing the reliability and quality of video delivery in next-generation wireless networks. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

18 pages, 3419 KiB  
Article
Differentiated Embedded Pilot Assisted Automatic Modulation Classification for OTFS System: A Multi-Domain Fusion Approach
by Zhenkai Liu, Bibo Zhang, Hao Luo and Hao He
Sensors 2025, 25(14), 4393; https://doi.org/10.3390/s25144393 - 14 Jul 2025
Viewed by 316
Abstract
Orthogonal time–frequency space (OTFS) modulation has emerged as a promising technology to alleviate the effects of the Doppler shifts in high-mobility environments. As a prerequisite to demodulation and signal processing, automatic modulation classification (AMC) is essential for OTFS systems. However, a very limited [...] Read more.
Orthogonal time–frequency space (OTFS) modulation has emerged as a promising technology to alleviate the effects of the Doppler shifts in high-mobility environments. As a prerequisite to demodulation and signal processing, automatic modulation classification (AMC) is essential for OTFS systems. However, a very limited number of works have focused on this issue. In this paper, we propose a novel AMC approach for OTFS systems. We build a dual-stream convolutional neural network (CNN) model to simultaneously capture multi-domain signal features, which substantially enhances recognition accuracy. Moreover, we propose a differentiated embedded pilot structure that incorporates information about distinct modulation schemes to further improve the separability of modulation types. The results of the extensive experiments carried out show that the proposed approach can achieve high classification accuracy even under low signal-to-noise ratio (SNR) conditions and outperform the state-of-the-art baselines. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop