Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (410)

Search Parameters:
Keywords = high thermoelectric materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2393 KiB  
Article
Impact of Cu-Site Dopants on Thermoelectric Power Factor for Famatinite (Cu3SbS4) Nanomaterials
by Jacob E. Daniel, Evan Watkins, Mitchel S. Jensen, Allen Benton, Apparao Rao, Sriparna Bhattacharya and Mary E. Anderson
Electron. Mater. 2025, 6(3), 10; https://doi.org/10.3390/electronicmat6030010 - 6 Aug 2025
Abstract
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, [...] Read more.
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, M = Cu, Zn, Mn) nanoparticles (diameter 20–30 nm) with controllable and stoichiometric incorporation of transition metal dopants on the Cu-site. To produce pellets for thermoelectric characterization, the densification process by spark plasma sintering was optimized for individual samples based on thermal stability determined using differential scanning calorimetry and thermogravimetric analysis. Electronic transport properties of undoped and doped famatinite nanoparticles were studied from 225–575 K, and the thermoelectric power factor was calculated. This is the first time electronic transport properties of famatinite doped with Zn or Mn have been studied. All famatinite samples had similar resistivities (>0.8 mΩ·m) in the measured temperature range. However, the Mn-doped famatinite nanomaterials exhibited a thermoelectric power factor of 10.3 mW·m−1·K−1 at 575 K, which represented a significant increase relative to the undoped nanomaterials and Zn-doped nanomaterials engendered by an elevated Seebeck coefficient of ~220 µV·K−1 at 575 K. Future investigations into optimizing the thermoelectric properties of Mn-doped famatinite nanomaterials are promising avenues of research for producing low-cost, environmentally friendly, high-performing thermoelectric materials. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 5802 KiB  
Article
Study on the Influence Mechanism of Alkaline Earth Element Doping on the Thermoelectric Properties of ZnO
by Haitao Zhang, Bo Feng, Yonghong Chen, Peng Jin, Ruolin Ruan, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong and Yanhua Fan
Micromachines 2025, 16(8), 850; https://doi.org/10.3390/mi16080850 - 24 Jul 2025
Viewed by 270
Abstract
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were [...] Read more.
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were prepared using the methods of room-temperature powder synthesis and high-temperature block synthesis. The phase composition, crystal structure, and thermoelectric performances of ZnO samples with different Sr doping levels were analyzed using XRD, material simulation software and thermoelectric testing devices, and the optimal doping concentrations were obtained. The results show that Sr doping could cause the Zn-O bond to become shorter; in addition, the hybridization between Zn and O atoms would become stronger, and the Sr atom would modify the density of states near the Fermi level, which could significantly increase the carrier concentration, electrical conductivity, and corresponding power factor. Sr doping could cause lattice distortion, enhance the phonon scattering effect, and decrease the lattice thermal conductivity and thermal conductivity. Sr doping can achieve the effect of improving electrical transport performance and decreasing thermal transport performance. The ZT value increased to ~0.418 at 873 K, which is ~4.2 times the highest ZT of the undoped ZnO sample. The Vickers hardness was increased to ~351.1 HV, which is 45% higher than the pristine ZnO. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 412
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 277
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

18 pages, 4169 KiB  
Article
Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin
by Luca Ferretti, Pietro Russo, Jessica Passaro, Francesca Nanni, Saverio D’Ascoli, Francesco Fabbrocino and Mario Bragaglia
Materials 2025, 18(15), 3453; https://doi.org/10.3390/ma18153453 - 23 Jul 2025
Viewed by 311
Abstract
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus [...] Read more.
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus on Digital Light Processing (DLP) 3D printing. Although UV curing proved ineffective at high filler concentrations due to the light opacity of Bi2Te3, thermal curing enabled the fabrication of stable, homogeneously dispersed composites. The samples were thoroughly characterized through rheology, FTIR, TGA, XRD, SEM, and density measurements. Thermoelectric performance was assessed under a 70 °C temperature gradient, with Seebeck coefficients reaching up to 51 µV/K. Accelerated chemical degradation studies in basic media confirmed the degradability of the matrix. The results demonstrate the feasibility of combining additive manufacturing with sustainable materials for low-power thermoelectric energy harvesting applications. Full article
Show Figures

Figure 1

21 pages, 3864 KiB  
Review
PANI-Based Thermoelectric Materials
by Mengran Chen, Dongmei Xie, Hongqing Zhou and Pengan Zong
Organics 2025, 6(3), 33; https://doi.org/10.3390/org6030033 - 22 Jul 2025
Viewed by 305
Abstract
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical [...] Read more.
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical applications due to its low electronic transport properties. This review focuses on the preparation methods and key strategies for developing high-performance PANI-based thermoelectric materials. It aims to comprehensively update knowledge regarding synthesis methods, microstructures, thermoelectric properties, and underlying mechanisms. The overall goal is to provide timely insights to promote the development of high-performance PANI-based thermoelectric materials. Full article
Show Figures

Graphical abstract

13 pages, 9148 KiB  
Article
Investigation of Thermoelectric Properties in Altermagnet RuO2
by Jun Liu, Chunmin Ning, Xiao Liu, Sicong Zhu and Shuling Wang
Nanomaterials 2025, 15(14), 1129; https://doi.org/10.3390/nano15141129 - 21 Jul 2025
Viewed by 306
Abstract
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity [...] Read more.
An altermagnet, characterized by its distinctive magnetic properties, may hold potential applications in diverse fields such as magnetic materials, spintronics, data storage, and quantum computing. As a prototypical altermagnet, RuO2 exhibits spin polarization and demonstrates the advantageous characteristics of high electrical conductivity and low thermal conductivity. These exceptional properties endow it with considerable promise in the emerging field of thermal spintronics. We studied the electronic structure and thermoelectric properties of RuO2; the constructed RuO2/TiO2/RuO2 all-antiferromagnetic tunnel junction (AFMTJ) exhibited thermally induced magnetoresistance (TIMR), reaching a maximum TIMR of 1756% at a temperature gradient of 5 K. Compared with prior studies on RuO2-based antiferromagnetic tunnel junctions, the novelty of this work lies in the thermally induced magnetoresistance based on its superior thermoelectric properties. In parallel structures, the spin-down current dominates the transmission spectrum, whereas in antiparallel structures, the spin-up current governs the transmission spectrum, underscoring the spin-polarized thermal transport. In addition, thermoelectric efficiency emphasizes the potential of RuO2 to link antiferromagnetic robustness with ferromagnetic spin functionality. These findings promote the development of efficient spintronic devices and spin-based storage technology for waste heat recovery and emphasize the role of spin splitting in zero-magnetization systems. Full article
Show Figures

Figure 1

12 pages, 2579 KiB  
Article
Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights
by Hugo Rojas-Chávez, Nina Daneu, Manuel A. Valdés-Madrigal, Guillermo Carbajal-Franco, Marcela Achimovičová and José M. Juárez-García
Quantum Beam Sci. 2025, 9(3), 24; https://doi.org/10.3390/qubs9030024 - 11 Jul 2025
Viewed by 290
Abstract
For the first time, a mixture of PbTe and Pb- and Te-oxides coated with carbon, under electron beam irradiation (EBI), was transformed into quantum dots, nanocrystals, nanoparticles and grains of PbTe with a sintered appearance. A small portion of non-stoichiometric phases was also [...] Read more.
For the first time, a mixture of PbTe and Pb- and Te-oxides coated with carbon, under electron beam irradiation (EBI), was transformed into quantum dots, nanocrystals, nanoparticles and grains of PbTe with a sintered appearance. A small portion of non-stoichiometric phases was also obtained. By selecting conditions that favor the instantaneous transformation, the Gibbs free energy barrier is lowered for obtaining different PbTe structures. The driving force associated with the high-energy milling requires 4 h of processing time to reach a complete transformation, while a high-energy source kinetically affects precursor surfaces to cause an abrupt global chemical transformation instantly. Importantly, the size of the PbTe structures increases as they approach the irradiation point, implying a growth process that is affected by the local temperature reached during the EBI. Imaging after the EBI process revealed morphological variations in PbTe, which can be attractive for use in thermoelectric materials. The results of this study provide the first insights into electron-beam-induced reactions using a multiphase mixture of precursors. Therefore, it is believed that this proposal can also be applied to obtain other binary semiconductor structures, even ternary ones. Full article
(This article belongs to the Special Issue New Challenges in Electron Beams)
Show Figures

Figure 1

12 pages, 1250 KiB  
Article
Probing the Structural Order of Half-Heusler Phases in Sb-Doped (Ti,Zr,Hf)NiSn Thermoelectrics
by Fani Pinakidou, Andreas Delimitis and Maria Katsikini
Nanomaterials 2025, 15(13), 1037; https://doi.org/10.3390/nano15131037 - 3 Jul 2025
Viewed by 331
Abstract
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. [...] Read more.
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The EXAFS measurements at the Ni-K, Sn-K, Zr-K, and Hf-L3-edge were implemented in an effort to reveal the influence of Hf and Zr incorporation into the crystal with respect to their previously measured TE properties. The substitution of Ti by Hf and Zr is expected to yield local lattice distortions due to the different atomic sizes of the dopants or/and electronic charge redistribution amongst the cations. However, the material is characterised by a high degree of crystallinity in both the short and long-range order, on average, and the nominal stoichiometry is identified as (Zr0.42Hf0.30Ti0.28)NiSn0.98Sb0.02. The synergistic effect of minimization of extended structural defects or lattice distortions and considerable alloying-induced point defect population contributes to the improved TE properties and leads to the previously reported enhancement of the figure of merit of the mixed HHs. Full article
Show Figures

Figure 1

16 pages, 9468 KiB  
Article
Recovery of Tetrahedrite from Mining Waste in Spain
by Ester Boixereu-Vila, Paula Adánez-Sanjuán, Ramón Jiménez-Martínez, Concepción Fernández-Leyva and Dulce Gómez-Limón
Minerals 2025, 15(7), 703; https://doi.org/10.3390/min15070703 - 30 Jun 2025
Viewed by 297
Abstract
The present study is part of the Horizon Europe-START project, which aims to recover tetrahedrite-group minerals present in mine dumps to be used as raw materials for the manufacture of thermoelectric devices. The aim of this work is to identify the mining waste [...] Read more.
The present study is part of the Horizon Europe-START project, which aims to recover tetrahedrite-group minerals present in mine dumps to be used as raw materials for the manufacture of thermoelectric devices. The aim of this work is to identify the mining waste facilities selected in Spain for the recovery of tetrahedrite and to outline the mineral processing operations performed on samples from each site to separate and concentrate this mineral. Ore deposits across Spain were selected based on the potential presence of tetrahedrite in their mining waste. A total of five deposits have been sampled, at which subsequent mineral separation and concentration tests have been conducted. A separation flowsheet is proposed in order to extract a high-purity tetrahedrite concentrate. Experimental results indicate two distinct options for separation approaches, depending on a key parameter that proves decisive in the processing of this mineral, which is whether the mineral paragenesis includes siderite. This study has demonstrated the technical feasibility of concentrating minerals of the tetrahedrite group through simple, cost-effective physical separation techniques—specifically magnetic and gravity separation—where the liberation size of the tetrahedrite exceeds 0.063 mm. Full article
Show Figures

Figure 1

15 pages, 2320 KiB  
Article
Enhanced Assessment of Transition Metal Copper Sulfides via Classification of Density of States Spectra
by Md Tohidul Islam, Catalina Victoria Ruiz, Claudia Loyola, Joaquin Peralta and Scott R. Broderick
Solids 2025, 6(3), 32; https://doi.org/10.3390/solids6030032 - 25 Jun 2025
Viewed by 465
Abstract
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By [...] Read more.
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By mapping high-dimensional DOS data into a lower-dimensional space, we identify clusters corresponding to different crystal systems and detect outliers with significant deviations from their expected groups. These outliers exhibit unusual electronic configurations, suggesting potential applications in semiconductors, thermoelectric devices, and optoelectronic devices. Projected Density of States (PDOS) analysis further reveals how orbital hybridization governs the electronic structure of these materials, highlighting key differences between structurally similar compounds. Additionally, we analyze phase stability through inter-cluster distance measurements, identifying potential phase transformations between closely related structures. The implications for this work in terms of modifying chemistries and generalized DOS predictions are discussed. Full article
Show Figures

Figure 1

13 pages, 2262 KiB  
Article
Application of Bioinspired Structural Ceramics with High-Temperature Electrical Insulation and High Adhesion in K-Type Coaxial Thermocouples
by Zhenyin Hai, Yue Chen, Zhixuan Su, Yemin Wang, Shigui Gong, Yihang Zhang, Shanmin Gao, Chengfei Zhang, Zhangquan Wang, Hongwei Ji, Chenyang Xue and Zhichun Liu
Materials 2025, 18(12), 2901; https://doi.org/10.3390/ma18122901 - 19 Jun 2025
Viewed by 349
Abstract
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, [...] Read more.
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, the fabrication of a high-temperature electrical insulation layer and a high-adhesion insulating layer in the coaxial thermocouples remains a challenge. Inspired by calcium carbonate/oxalate crystals in jujube leaves that strengthen the leaves, a bioinspired structural ceramic (BSC) mimicking these needle-like crystals is designed. This BSC demonstrates excellent high-temperature insulation (with insulation impedance of 2.55 kΩ at 1210 °C) and adhesion strength (35.3 Newtons). The BSC is successfully used as the insulating layer in a K-type coaxial thermocouple. The generation rules for surface junctions are systematically studied, revealing that stable and reliable measurement junctions can be created when the sandpaper grit does not exceed 600#. Static test results show that the K-type coaxial thermocouple ranges from 200 °C to 1200 °C with an accuracy of 1.1%, a drift rate better than 0.0137%/h, and hysteresis better than 0.81%. Dynamic test results show that the response time is 1.08 ms. The K-type coaxial thermocouple can withstand a high-temperature flame impact for 300 s at 1200 °C, as well as over forty cycles of high-power laser thermal shock, while maintaining good response characteristics. Therefore, the K-type coaxial thermocouple designed in this study provides an ideal solution for long-term temperature monitoring of the thermal components of aerospace engines under extremely high-temperature, high-speed, and strong thermal shock conditions. Full article
Show Figures

Figure 1

14 pages, 1309 KiB  
Article
Effects of Ni Doping on Thermoelectric Properties of Chalcopyrite
by Hyeokmin Kwon and Il-Ho Kim
Materials 2025, 18(12), 2738; https://doi.org/10.3390/ma18122738 - 11 Jun 2025
Viewed by 430
Abstract
Chalcopyrite (CuFeS2) has attracted interest as a thermoelectric material due to its narrow bandgap and its ability to tailor its carrier concentration through doping. In this study, we investigated the effects of Ni2+ substitution at Cu+ sites in chalcopyrite [...] Read more.
Chalcopyrite (CuFeS2) has attracted interest as a thermoelectric material due to its narrow bandgap and its ability to tailor its carrier concentration through doping. In this study, we investigated the effects of Ni2+ substitution at Cu+ sites in chalcopyrite (Cu1−xNixFeS2) on its structural, microstructural, and thermoelectric properties. Samples were synthesized using mechanical alloying followed by hot pressing to ensure high-density compaction. X-ray diffraction analysis confirmed the formation of the tetragonal chalcopyrite phase without detectable secondary phases. The observed reduction in lattice parameters with increasing Ni content provided evidence of successful Ni incorporation at Cu sites within the chalcopyrite structure. Microstructural analysis and elemental mapping further supported the uniform distribution of Ni within the chalcopyrite matrix. Thermoelectric property measurements revealed that Ni-doped chalcopyrite exhibited n-type conduction. As the Ni concentration increased, the carrier concentration and electrical conductivity increased significantly, with Cu0.92Ni0.08FeS2 achieving the highest electrical conductivity of 2.5 × 104 Sm−1 at 723 K. However, the absolute value of the Seebeck coefficient decreased with increasing Ni doping, following the expected trade-off between electrical conductivity and thermopower. The optimized composition, Cu0.96Ni0.04FeS2, exhibited the highest thermoelectric performance, with a power factor of 0.50 mWm−1K−2 and a maximum dimensionless figure of merit (ZT) of 0.18 at 623 K. Compared to undoped chalcopyrite, these enhancements represent a 43% increase in power factor and a 50% improvement in ZT. Full article
(This article belongs to the Special Issue Sustainable Thermoelectric Materials and Energy Conversion Systems)
Show Figures

Figure 1

27 pages, 1091 KiB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 1690
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

Back to TopTop