Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin
Highlights
- Sustainable bio-based thermoelectric composites have been developed for 3D printing.
- High filler loading hinders UV-curing; DLP printing remains challenging.
- Thermal curing with DCP enables effective Bi2Te3 dispersion and crosslinking.
- A Seebeck coefficient of up to 51 µV/K shows promise for energy harvesting.
- The matrix degrades in basic media, allowing for the recovery and reuse of Bi2Te3 filler.
Abstract
1. Introduction
2. Experiments
2.1. Raw Materials and Preliminary Characterization
- Bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide (BAPO) was employed in the case of photopolymerization. Supplied by Sigma-Aldrich, BAPO has a melting point of 131–135 °C, a purity of 97%, and is active in the UV range of 350–420 nm;
- Dicumyl peroxide (DCP) was used for thermal curing. Also obtained from Sigma-Aldrich, DCP features high thermal stability due to the steric hindrance from adjacent substituents near the peroxide group. Upon heating, it decomposes via homolytic cleavage in the peroxide bond region, initiating the crosslinking reaction.
2.2. Preparation and Preliminary Characterization of Resin Batches
2.3. Crosslinking Tests and 3D Printing of BAPO-Based Resins
2.4. Physical, Chemical, and Morphological Characterization
2.5. Thermoelectric Measurements
3. Results and Discussion
3.1. Bismuth Telluride Filler Phase Analysis and Morphology
3.2. Rheological Behavior of Neat and Bi2Te3-Filled Resin
3.3. Photo Crosslinking and Thermal Crosslinking
3.4. Physical, Chemical, and Morphological Properties of Bi2Te3 Composites
3.5. Thermoelectric Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- d’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric Materials and Applications: A Review. Energies 2023, 16, 6409. [Google Scholar] [CrossRef]
- Subramanian, V.; Varade, D. Thermoelectric Properties of Biopolymer Composites. In Biopolymer Composites in Electronics; Elsevier: London, UK, 2017; pp. 155–183. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-T.; Huang, G.-Y.; Chu, H.-S.; Yu, B.; Yao, D.-J. An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module. Appl Energy 2011, 88, 5173–5179. [Google Scholar] [CrossRef]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Elsheikh, M.H.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Hassan, M.H.; Bashir, M.B.A.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Van Herwaarden, A.W.; Sarro, P.M. Thermal sensors based on the seebeck effect. Sens. Actuators 1986, 10, 321–346. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Snyder, G.J. Small Thermoelectric Generators. Electrochem. Soc. Interface 2008, 17, 54–56. [Google Scholar] [CrossRef]
- Chen, Y.X.; Shi, X.L.; Zhang, J.Z.; Nisar, M.; Zha, Z.Z.; Zhong, Z.N.; Li, F.; Liang, G.X.; Luo, J.T.; Li, M.; et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Shi, X.L.; Li, M.; Nisar, M.; Mansoor, A.; Chen, S.; Chen, Y.; Li, F.; Ma, H.; Liang, G.X.; et al. Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 2024, 15, 923. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Shi, X.L.; Ao, D.W.; Liu, W.D.; Li, M.; Kou, L.Z.; Chen, Y.X.; Li, F.; Wei, M.; Liang, G.X.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2022, 6, 180–191. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [PubMed]
- Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1800904. [Google Scholar] [CrossRef]
- Zheng, J.C. Recent advances on thermoelectric materials. Front. Phys. China. 2008, 3, 269–279. [Google Scholar] [CrossRef]
- Burton, M.; Howells, G.; Atoyo, J.; Carnie, M. Printed Thermoelectrics. Adv. Mater. 2022, 34, 2108183. [Google Scholar] [CrossRef] [PubMed]
- Zeier, W.G.; Zevalkink, A.; Gibbs, Z.M.; Hautier, G.; Kanatzidis, M.G.; Snyder, G.J. Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angew. Chem. Int. Ed. 2016, 55, 6826–6841. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Gao, H.; Liu, X.; Xie, H.; Shen, J.; Zhu, T.; Zhao, X. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J. Mater. Chem. 2012, 22, 16484. [Google Scholar] [CrossRef]
- Li, J.; Pan, Y.; Wu, C.; Sun, F.; Wei, T. Processing of advanced thermoelectric materials. Sci. China Technol. Sci. 2017, 60, 1347–1364. [Google Scholar] [CrossRef]
- Li, J.; Huckleby, A.B.; Zhang, M. Polymer-based thermoelectric materials: A review of power factor improving strategies. J. Mater. 2022, 8, 204–220. [Google Scholar] [CrossRef]
- Aluyor, E.O.; Obahiagbon, K.O.; Ori-Jesu, M. Biodegradation of vegetable oils: A review. Sci. Res. Essay 2009, 4, 543–548. [Google Scholar]
- Wang, Z. Green Chemistry: Recent advances in developing catalytic processes in environmentally-benign solvent systems. Front. Chem. 2008, 28, 1–43. [Google Scholar]
- Correa, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2019, 208, 785–794. [Google Scholar] [CrossRef]
- Torres-Giner, S. Sustainable Polymer Technologies for a Circular Economy. Appl. Sci. 2023, 13, 5864. [Google Scholar] [CrossRef]
- Karak, N. Vegetable oils and their derivatives. In Vegetable Oil-Based Polymers; Elsevier: London, UK, 2012; pp. 54–95. [Google Scholar] [CrossRef]
- Bassett, A.W.; La Scala, J.J.; Stanzione, J.F., III. Richard P. Wool’s contributions to sustainable polymers from 2000 to 2015. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Niaki, M.K.; Torabi, S.A.; Nonino, F. Why manufacturers adopt additive manufacturing technologies: The role of sustainability. J. Clean. Prod. 2019, 222, 381–392. [Google Scholar] [CrossRef]
- Hong, M.; Sun, S.; Lyu, W.; Li, M.; Liu, W.; Shi, X.L.; Chen, Z.G. Advances in printing techniques for thermoelectric materials and devices. Soft Sci. 2023, 3. [Google Scholar] [CrossRef]
- Cui, G.P.; Feng, C.P.; Xu, S.C.; Sun, K.Y.; Ji, J.C.; Hou, L.; Lan, H.B.; Shang, H.J.; Ding, F.Z. 3D-printed Bi 2 Te 3 -based Thermoelectric Generators for Energy Harvesting and Temperature Response. ACS Appl. Mater. Interfaces 2024, 16, 35353–35360. [Google Scholar] [CrossRef] [PubMed]
- Branciforti, D.S.; Lazzaroni, S.; Milanese, C.; Castiglioni, M.; Auricchio, F.; Pasini, D.; Dondi, D. Visible light 3D printing with epoxidized vegetable oils. Addit. Manuf. 2019, 25, 317–324. [Google Scholar] [CrossRef]
- Barkane, A.; Platnieks, O.; Jurinovs, M.; Kasetaite, S.; Ostrauskaite, J.; Gaidukovs, S.; Habibi, Y. UV-Light Curing of 3D Printing Inks from Vegetable Oils for Stereolithography. Polymers 2021, 13, 1195. [Google Scholar] [CrossRef] [PubMed]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- Snyder, G.J.; Snyder, A.H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy. Environ. Sci. 2017, 10, 2280–2283. [Google Scholar] [CrossRef]
- van der PAUW, L.J. A Method Of Measuring Specific Resistivity And Hall Effect Of Discs Of Arbitrary Shape. In Semiconductor Devices: Pioneering Papers; World Scientific: Singapore, 1991; pp. 174–182. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity Part 2: Transient Plane Heat Source (Hot Disc) Method. International Organization for Standardization: Geneva, Switzerland, 2022.
- Luo, Y.; Le Fer, G.; Dean, D.; Becker, M.L. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules 2019, 20, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.; Kwon, B.; Eom, Y.; Lee, J.E.; Park, S.; Jo, S.; Park, S.H.; Kim, B.S.; Im, H.J.; Lee, M.H. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309. [Google Scholar] [CrossRef]
- Genovese, D.B. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Adv. Colloid Interface Sci. 2012, 171–172, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nadiv, R.; Fernandes, R.M.; Ochbaum, G.; Dai, J.; Buzaglo, M.; Varenik, M.; Biton, R.; Furo, I.; Regev, O. Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. Polymer 2018, 153, 52–60. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, K.; Li, K.; Ren, D. Dependence of rheological behaviors of polymeric composites on the morphological structure of carbonaceous nanoparticles. J. Appl. Polym. Sci. 2018, 135, 46416. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, K. Low temperature reduction route to synthesise bismuth telluride (Bi2Te3) nanoparticles: Structural and optical studies. J. Exp. Nanosci. 2014, 9, 1064–1074. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Popov, V.S.; Zvyagin, A.I.; Lavrentyev, N.A.; Mirofyanchenko, A.E.; Mirofyanchenko, E.V.; Shuklov, I.A.; Ovchinnikov, O.V.; Ponomarenko, V.P.; Razumov, V.F. Exfoliated Bi2Te3 nanoparticle suspensions and films: Morphological and nonlinear optical characterization. Nanophotonics 2021, 10, 3857–3870. [Google Scholar] [CrossRef]
- Adam, A.M. Characterization of thin Bi2Te3-based films and effects of heat treatment on their optical properties. J. Alloys. Compd. 2018, 765, 1072–1081. [Google Scholar] [CrossRef]
- Fan, X.A.; Yang, J.Y.; Xie, Z.; Li, K.; Zhu, W.; Duan, X.K.; Xiao, C.J.; Zhang, Q.Q. Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites. J. Phys. D Appl. Phys. 2007, 40, 5975–5979. [Google Scholar] [CrossRef]
- Lyu, S.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Delaviz, Y.; Banh, M.; Guo, Y.; Santerre, J.P. Biodegradation of composite resin with ester linkages: Identifying human salivary enzyme activity with a potential role in the esterolytic process. Dent. Mater. 2014, 30, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Tritt, T.M.; Browning, V.M. Chapter 2 Overview of measurement and characterization techniques for thermoelectric materials. In Semiconductors and Semimetals; Elsevier: London, UK, 2001; pp. 25–49. [Google Scholar] [CrossRef]
- Ijaz, U.; Siyar, M.; Park, C. The power of pores: Review on porous thermoelectric materials. RSC Sustain. 2024, 2, 852–870. [Google Scholar] [CrossRef]
- Su, N.; Zhu, P.; Pan, Y.; Li, F.; Li, B. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy 2020, 195, 116892. [Google Scholar] [CrossRef]
- Rodrigues-Marinho, T.; Correia, V.; Tubio, C.R.; Ares-Pernas, A.; Abad, M.J.; Lanceros-Méndez, S.; Costa, P. Flexible thermoelectric energy harvesting system based on polymer composites. Chem. Eng. J. 2023, 473, 145297. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Kim, M.; Kim, Y.; Tripathi, A.; Kwon, Y.W.; Kwak, J.; Woo, H.Y. Closely Packed Polypyrroles via Ionic Cross-Linking: Correlation of Molecular Structure–Morphology–Thermoelectric Properties. ACS Appl. Mater. Interfaces 2020, 12, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, H.; Kirksey, E.; Hoffman, C.; Jang, H.J.; Wagner, J.; Madan, D.; Katz, H.E. Contributions to composite conductivity and Seebeck coefficient in commercial Bi2Te3—Conjugated polymer composites. J. Appl. Phys. 2019, 125, 125502. [Google Scholar] [CrossRef]
Formulation | PEGDA–AESO–PETA Weight Ratio | Filler (wt%) | BAPO (wt%) | DCP (wt%) |
---|---|---|---|---|
5:5:1-25-1B | 5:5:1 | 25 | 1 | - |
5:5:1-50-1B | 5:5:1 | 50 | 1 | - |
5:5:1-75-1B | 5:5:1 | 75 | 1 | - |
5:5:1-75-2B | 5:5:1 | 75 | 2 | - |
6:3:1 | 6:3:1 | 0 | 1 | - |
6:3:1-75-1B | 6:3:1 | 75 | 1 | - |
6:3:1-75-2B | 6:3:1 | 75 | 2 | - |
6:3:1-75-5D | 6:3:1 | 75 | - | 5 |
6:3:1-75-20D | 6:3:1 | 75 | - | 20 |
Sample | Bottom Layers Exposure Time (s) | Normal Exposure Time (s) | Layer Height (µm) |
---|---|---|---|
1 | 120 | 90 | 50 |
2 | 180 | 120 | 50 |
3 | 360 | 200 | 50 |
4 | 360 | 200 | 100 |
Specimen | Experimental Density | Theoretical Density |
---|---|---|
6:3:1-75-5D cured at 100 °C | 3.07 g/cm3 | 3.08 g/cm3 |
6:3:1-75-20D cured at 100 °C | 3.6 g/cm3 | 3.08 g/cm3 |
6:3:1-75-20D cured at 120 °C | 1.85 g/cm3 | 3.08 g/cm3 |
DCP (%w) | Seebeck Coefficient (µV/K) | Rs [kΩ/□] | ρ [kΩ·m] | K [W/K·m] | ZT |
---|---|---|---|---|---|
5 | 19 ± 2 | 3567 | 10.701 | 0.43 | 2.42 × 10−11 |
20 | 51 ± 4 | 2138 | 6.414 | 0.47 | 2.66 × 10−10 |
100% Bi2Te3 [49] | 141 | n.a. | 1.1 × 10−4 | (0.53–0.55) | (0.7–0.11) |
T. Rodrigues-Marinho et al. [50] | (15–36) | n.a. | n.a. | n.a. | (10−6–10−15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, L.; Russo, P.; Passaro, J.; Nanni, F.; D’Ascoli, S.; Fabbrocino, F.; Bragaglia, M. Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin. Materials 2025, 18, 3453. https://doi.org/10.3390/ma18153453
Ferretti L, Russo P, Passaro J, Nanni F, D’Ascoli S, Fabbrocino F, Bragaglia M. Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin. Materials. 2025; 18(15):3453. https://doi.org/10.3390/ma18153453
Chicago/Turabian StyleFerretti, Luca, Pietro Russo, Jessica Passaro, Francesca Nanni, Saverio D’Ascoli, Francesco Fabbrocino, and Mario Bragaglia. 2025. "Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin" Materials 18, no. 15: 3453. https://doi.org/10.3390/ma18153453
APA StyleFerretti, L., Russo, P., Passaro, J., Nanni, F., D’Ascoli, S., Fabbrocino, F., & Bragaglia, M. (2025). Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin. Materials, 18(15), 3453. https://doi.org/10.3390/ma18153453