Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Milling Treatment
2.3. Structural Characterization
2.4. Preparation of TEM Specimens and Analysis
3. Results and Discussion
3.1. X-Ray Powder Diffraction
3.2. TEM Analysis
3.2.1. Before Blasting the Multiphase Mixture with an Electron Beam
3.2.2. After Blasting the Multiphase Mixture with an Electron Beam
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EB | Electron beam |
EBI | Electron beam irradiation |
HEM | High-energy milling |
TEM | Transmission electron microscopy |
XRD | X-ray diffraction |
References
- Jiang, Y.; Pei, C.; Wang, Q.; Wu, J.; Zhang, L.; Xiong, C.; Qi, Y. Pressure-Induced Superconductivity and Phase Transition in PbSe and PbTe. Chin. Phys. B 2024, 33, 126105. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Jiang, Y.; Ma, H.; Deng, S.; Deng, S. Anionic Isoelectronic Substitution Effects on Thermal Stability and Thermoelectric Performance of PbTe-PbSe Compounds. J. Electron. Mater. 2025, 54, 6300–6314. [Google Scholar] [CrossRef]
- Lyssenko, S.; Amar, M.; Sermiagin, A.; Barbora, A.; Minnes, R. Tailoring PbTe quantum dot Size and morphology via ligand composition. Sci. Rep. 2025, 15, 2630. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Chávez, H.; Miralrio, A.; Cruz-Martínez, H.; Carbajal-Franco, G.; Valdés-Madrigal, M.A. Oriented-Attachment- And Defect-Dependent PbTe Quantum Dots Growth: Shape Transformations Supported by Experimental Insights and DFT Calculations. Inorg. Chem. 2021, 60, 7196. [Google Scholar] [CrossRef]
- Chen, T.; Shao, Y.; Feng, R.; Zhang, J.; Wang, Q.; Dong, Y.; Ma, H.; Sun, B.; Ao, D. Enhancing the Thermoelectric Performance of n-Type PbTe via Mn Doping. Materials 2025, 18, 1029. [Google Scholar] [CrossRef]
- Gao, P.; Chen, X.; Liu, Z.; An, W.; Wang, N. Theoretical Investigation of the Ultralow Thermal Conductivity of 2D PbTe via a Strain Regulation Method. Phys. Chem. Chem. Phys. 2025, 27, 10198–10208. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Pineda, A.J.M.; Garcia, J.M.J.; Cruz-Martínez, H.; Montejo-Alvaro, F. Theoretical Study of the Adsorption Modes of a Process Control Agent in the Growth of PbTe. Rev. Mex. Física 2025, 71, 011004. [Google Scholar] [CrossRef]
- Deng, Q.; Tan, X.; Wen, J.; Li, R.; Luo, J.; Xie, Y.; Zhao, Z.; Sa, B.; Ang, R. Ultra-High Thermoelectric Performance in Ternary n-Type PbTe Collaboratively Enabled by Self-Optimized Carrier Concentration and Ultra-Low Lattice Thermal Conductivity. J. Mater. Sci. Technol. 2025, 236, 86–94. [Google Scholar] [CrossRef]
- Guo, W.; Ran, Y.; Han, J.; Wang, S.; Ning, X. PbTe Films with In-Plane Random Orientation: Viable Alternatives for Room-Temperature Thermoelectric Generators. J. Alloys Compd. 2025, 1021, 179635. [Google Scholar] [CrossRef]
- Ma, L.; Song, L.; Zheng, Z.; Lan, Y.; Zhou, L.; Liu, R.; Li, Y.; Wei, Z.; Wu, S.; Shi, Y.; et al. Optimizing the Cooling Performance of Lead Telluride by Doping Silver. Solid. State Sci. 2025, 162, 107859. [Google Scholar] [CrossRef]
- Ten Kate, S.C.; Ritter, M.F.; Fuhrer, A.; Jung, J.; Schellingerhout, S.G.; Bakkers, E.P.A.M.; Riel, H.; Nichele, F. Small Charging Energies and G-Factor Anisotropy in PbTe Quantum Dots. Nano Lett. 2022, 22, 7049–7056. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; de Wit, J.; Vanmaekelbergh, D. Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals. Chem. Mater. 2019, 31, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Jarashneli, A.; Towe, E.; Auslender, M.; Kovalyuk, V.; Goltsman, G.; Dashevsky, Z. Development of Regular Vertical P-n Junction on Nanocrystalline PbTe Film. J. Appl. Phys. 2025, 137, 105302. [Google Scholar] [CrossRef]
- Skelton, J.M.; Parker, S.C.; Togo, A.; Tanaka, I.; Walsh, A. Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles. Phys. Rev. B 2014, 89, 205203. [Google Scholar] [CrossRef]
- Li, Y.; Bi, H.; Du, Y.; Che, R. Synthesis and Thermoelectric Properties of Defect-Containing PbSe–PbTe Heterojunction Nanostructures. RSC Adv. 2017, 7, 53855–53860. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Miralrio, A.; Juárez-García, J.M.; Carbajal-Franco, G.; Cruz-Martínez, H.; Montejo-Alvaro, F.; Valdés-Madrigal, M.A. A Comparative DFT Study on Process Control Agents in the Mechanochemical Synthesis of PbTe. Int. J. Mol. Sci. 2022, 23, 11194. [Google Scholar] [CrossRef]
- Park, S.; Ryu, B.; Park, S. Off-Centered Pb Interstitials in PbTe. Materials 2022, 15, 1272. [Google Scholar] [CrossRef]
- Yu, H.; Zu, Y.; Gao, L.; Zaheer Ud Din, S.; Li, C.; Gao, H.; Ji, W.; Xu, H.; Zhai, R.; Jia, Z.; et al. Zero-Dimensional Lead Telluride Quantum Dots Optical Modulator for Red Pr:YLF Ultrashort Pulse Laser. Opt. Laser Technol. 2025, 181, 112003. [Google Scholar] [CrossRef]
- Senapati, P.; Parida, P. Thermoelectric performance of quantum dots embedded in an Aharonov-Bohm ring: A Pauli master equation approach. Sci. Rep. 2025, 15, 13232. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, C.; Zhou, X.; Xiao, L.; Li, Z.; Zhang, Y. A Review of Top-Down Strategies for the Production of Quantum-Sized Materials. Small Sci. 2023, 3, 2300086. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Reyes-Carmona, F.; Garibay-Febles, V.; Jaramillo-Vigueras, D. Solid–Solid and Gas–Solid Interactions Induced during High-Energy Milling to Produce PbTe Nanopowders. J. Nanopart. Res. 2013, 15, 1623. [Google Scholar] [CrossRef]
- Lee, S.B.; Kwon, J.; Yoo, S.J.; Kim, H.S. Lattice Destabilization in Electron-Beam-Irradiated Antimony in TEM. Mater. Charact. 2024, 212, 114008. [Google Scholar] [CrossRef]
- Lian, L.; Cheng, F.; Xia, Y.; Zheng, M.; Ke, J.; Zhang, W.; He, J.; Liu, H.; Zhang, D.; Gao, J.; et al. Electron Beam Induced Formation of Hollow RbBr Nanocubes. J. Phys. Chem. C 2018, 122, 28347–28350. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Zhang, S.; Zhou, X.; He, L.; Sheridan, M.V.; Yuan, M.; Zhang, M.; Chen, L.; Dai, X.; et al. Electron Beam Irradiation as a General Approach for the Rapid Synthesis of Covalent Organic Frameworks under Ambient Conditions. J. Am. Chem. Soc. 2020, 142, 9169–9174. [Google Scholar] [CrossRef]
- Neumann, C.; Wilhelm, R.A.; Küllmer, M.; Turchanin, A. Low-Energy Electron Irradiation Induced Synthesis of Molecular Nanosheets: Influence of the Electron Beam Energy. Faraday Discuss. 2021, 227, 61–79. [Google Scholar] [CrossRef]
- Weinel, K.; Hahn, M.B.; Lubk, A.; Feng, W.; Gonzalez Martinez, I.G.; Büchner, B.; Agudo Jácome, L. Nanoparticle Synthesis by Precursor Irradiation with Low-Energy Electrons. ACS Appl. Nano Mater. 2025, 8, 4980–4988. [Google Scholar] [CrossRef]
- Arnold, M.; Katzmann, J.; Naik, A.; Görne, A.L.; Härtling, T.; George, J.; Schuster, C. Investigations on Electron Beam Irradiated Rare-Earth Doped SrF2 for Application as Low Fading Dosimeter Material: Evidence for and DFT Simulation of a Radiation-Induced Phase. J. Mater. Chem. C 2022, 10, 11579–11587. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Shu, J.; Yuan, M.; Yan, W.; Bai, P.; He, L.; Shen, N.; Gong, S.; Zhang, D.; et al. Electron Beam Irradiation-Induced Formation of Defect-Rich Zeolites under Ambient Condition within Minutes. Angew. Chem. Int. Ed. 2021, 60, 14858–14863. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Sharshir, A.I.; Zaghlool, R.A.; Mohamed, F. Investigating the Impact of Electron Beam Irradiation on Electrical, Magnetic, and Optical Properties of XLPE/Co3O4 Nanocomposites. Sci. Rep. 2024, 14, 4829. [Google Scholar] [CrossRef]
- Latham, A.H.; Williams, M.E. Transmission Electron Microscope-Induced Structural Evolution in Amorphous Fe, Co, and Ni Oxide Nanoparticles. Langmuir 2008, 24, 14195–14202. [Google Scholar] [CrossRef]
- Zelenina, I.; Veremchuk, I.; Grin, Y.; Simon, P. In Situ Observation of Electron-Beam-Induced Formation of Nano-Structures in PbTe. Nanomaterials 2021, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Sun, Y.; Chen, Z. Rapid Fabrication of Nanocrystals through in Situ Electron Beam Irradiation in a Transmission Electron Microscope. J. Phys. Chem. C 2009, 113, 5201–5205. [Google Scholar] [CrossRef]
- Falqui, A.; Bertoni, G.; Genovese, A.; Marras, S.; Malerba, M.; Franchini, I.R.; Manna, L. Electron Microscopy Studies of Electron-Beam Sensitive PbTe-Based Nanostructures. Microsc. Res. Tech. 2010, 73, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Chávez, H.; Carbajal-Franco, G.; Cruz-Martínez, H.; Juárez-García, J.M. Insights into the Mechanochemical Synthesis of Nanostructured PbTe: The Role of Structural Defects. Mater. Lett. 2024, 370, 136807. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Díaz-de la Torre, S.; Jaramillo-Vigueras, D.; Plascencia, G. PbTe Mechanosynthesis from PbO and Te. J. Alloys Compd. 2009, 483, 275–278. [Google Scholar] [CrossRef]
- Mourad, M.M.; Sharshar, T.; Ghali, M.; Abdou, Y.; Elhussiny, F.; Hemeda, O.M.; Badran, H.M. Effect of Mechanical Ball Milling on the Microstructure and Radiation Shielding Performance of Nano-PbO. Chem. Phys. 2025, 591, 112542. [Google Scholar] [CrossRef]
- Han, L.; Liu, C.; Wang, X.; Li, F.; Fan, C.; Zhang, J. Low-Temperature Aqueous Solution Growth of the Acousto-Optic TeO2 Single Crystals. Mater. Adv. 2024, 5, 3022–3028. [Google Scholar] [CrossRef]
- Weil, M.; Shirkhanlou, M.; Füglein, E.; Libowitzky, E. Determination of the Correct Composition of “Hydrous Lead(II) Oxotellurate(IV)” as PbTeO3, Crystallizing as a New Polymorph. Crystals 2018, 8, 51. [Google Scholar] [CrossRef]
- Sherchenkov, A.; Borgardt, N.; Shtern, M.; Zaytseva, Y.; Shtern, Y.; Rogachev, M.; Sazonov, V.; Yakubov, A.; Pepelyaev, D. The Role of Nanostructuring Strategies in PbTe on Enhancing Thermoelectric Efficiency. Mater. Today Energy 2023, 37, 101416. [Google Scholar] [CrossRef]
- Kim, H.B.; Jeun, J.P.; Kang, P.H.; Oh, S.-H. Fabrication of Carbon Layer Coated FE-Nanoparticles Using an Electron Beam Irradiation. Radiat. Phys. Chem. 2016, 118, 2–5. [Google Scholar] [CrossRef]
- Karansky, V.V.; Klimov, A.S.; Smirnov, S.V. Structural Transformations in Mn–Zn Ferrite under Low-Energy Electron Beam Treatment. Vacuum 2020, 173, 109115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Chávez, H.; Daneu, N.; Valdés-Madrigal, M.A.; Carbajal-Franco, G.; Achimovičová, M.; Juárez-García, J.M. Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights. Quantum Beam Sci. 2025, 9, 24. https://doi.org/10.3390/qubs9030024
Rojas-Chávez H, Daneu N, Valdés-Madrigal MA, Carbajal-Franco G, Achimovičová M, Juárez-García JM. Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights. Quantum Beam Science. 2025; 9(3):24. https://doi.org/10.3390/qubs9030024
Chicago/Turabian StyleRojas-Chávez, Hugo, Nina Daneu, Manuel A. Valdés-Madrigal, Guillermo Carbajal-Franco, Marcela Achimovičová, and José M. Juárez-García. 2025. "Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights" Quantum Beam Science 9, no. 3: 24. https://doi.org/10.3390/qubs9030024
APA StyleRojas-Chávez, H., Daneu, N., Valdés-Madrigal, M. A., Carbajal-Franco, G., Achimovičová, M., & Juárez-García, J. M. (2025). Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights. Quantum Beam Science, 9(3), 24. https://doi.org/10.3390/qubs9030024