Feature Papers of Electronic Materials—Third Edition

A special issue of Electronic Materials (ISSN 2673-3978).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 5313

Special Issue Editor


E-Mail Website
Guest Editor
1. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
2. Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
Interests: organic electronics; physical chemical aspects of π-conjugated self-organizing systems and their functionality
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This is a Special Issue of high-quality papers in open access format by the Editorial Board Members of Electronic Materials, or those invited by the Editorial Office and the Editor-in-Chief.

The objective of this Special Issue is to present a compilation of exceptional, unique articles and comprehensive reviews that cover a wide range of materials relevant to the field of electronics. Our belief is that these articles will be extensively read and will significantly impact the field. We are confident that the high quality and originality of the content will capture the attention of readers and inspire further research and development in this area.

Prof. Dr. Wojciech Pisula
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronic Materials is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dielectric materials
  • semiconductors
  • low- dimensional semiconductors
  • 2D and quasi-2D semiconductors
  • piezoelectric
  • ferroelectric
  • antiferroelectric
  • conductive metals and alloys
  • magnetic materials
  • superconducting materials
  • optoelectronic materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2787 KB  
Article
An Efficient Electrostatic Discharge Analytical Model for a Local Bottom-Gate Carbon Nanotube Field-Effect Transistor
by Weiyi Zheng, Yuyan Zhang, Zhifeng Chen, Qiaoying Gan, Xuefang Xiao, Ying Gao, Jianhua Jiang and Chengying Chen
Electron. Mater. 2025, 6(4), 17; https://doi.org/10.3390/electronicmat6040017 - 23 Oct 2025
Viewed by 343
Abstract
In the post-Moore era, carbon nanotube field-effect transistors (CNTFETs) are a promising alternative to complementary metal-oxide-semiconductor (CMOS) technology at and below the 5 nm node. Compact models bridge circuit design and device physics, yet the electrostatic discharge (ESD) behavior of CNTFETs remains insufficiently [...] Read more.
In the post-Moore era, carbon nanotube field-effect transistors (CNTFETs) are a promising alternative to complementary metal-oxide-semiconductor (CMOS) technology at and below the 5 nm node. Compact models bridge circuit design and device physics, yet the electrostatic discharge (ESD) behavior of CNTFETs remains insufficiently captured. Focusing on the local bottom-gate (LBG) CNTFET structure, which offers enhanced gate control due to its bottom-gate configuration, this paper investigates three dominant ESD-triggering mechanisms—thermionic current, tunneling leakage current, and thermal failure breakdown. Then, a hybrid compact–behavioral ESD model for CNTFETs is established. After theoretical derivation and comparison with test results, the model parameters are optimized through fitting. The simulation results exhibit excellent agreement with CNTFET measurements, particularly capturing the Human Body Model (HBM) pre-charge threshold phenomenon at 72 V and accurately predicting the subsequent voltage collapse behavior. This validates the accuracy and effectiveness of the model, laying a theoretical and experimental foundation for further construction of carbon-based standard-cell and I/O libraries. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

12 pages, 1863 KB  
Article
Development of Water-Developable Negative Photoresist for i-Line Photolithography Using Cellulose Derivatives with Underlayer
by Hiryu Hayashi, Yuna Hachikubo, Mano Ando, Misaki Oshima, Mayu Morita and Satoshi Takei
Electron. Mater. 2025, 6(4), 13; https://doi.org/10.3390/electronicmat6040013 - 25 Sep 2025
Viewed by 594
Abstract
Water-developable photoresist was synthesized by introducing methacrylate groups into hydroxypropyl cellulose (HPC), a cellulose derivative, via substitution of hydroxyl groups. The material enabled micropatterning through ultraviolet (UV) exposure at a wavelength of 365 nm with an exposure dose of 450 mJ/cm2. [...] Read more.
Water-developable photoresist was synthesized by introducing methacrylate groups into hydroxypropyl cellulose (HPC), a cellulose derivative, via substitution of hydroxyl groups. The material enabled micropatterning through ultraviolet (UV) exposure at a wavelength of 365 nm with an exposure dose of 450 mJ/cm2. Line and dot micropatterns were formed on polypropylene substrates applying underlayer, achieving resolutions of 4.5 µm and 5.0 µm, respectively. The photoresist demonstrated superior etching resistance under CF4 plasma compared to another water-soluble photo resist. Unlike conventional photoresists that require hazardous organic solvents, this water-developable photoresist offers an environmentally friendly alternative, reducing health risks and environmental impact in the electronics industry. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Graphical abstract

17 pages, 2393 KB  
Article
Impact of Cu-Site Dopants on Thermoelectric Power Factor for Famatinite (Cu3SbS4) Nanomaterials
by Jacob E. Daniel, Evan Watkins, Mitchel S. Jensen, Allen Benton III, Apparao Rao, Sriparna Bhattacharya and Mary E. Anderson
Electron. Mater. 2025, 6(3), 10; https://doi.org/10.3390/electronicmat6030010 - 6 Aug 2025
Viewed by 821
Abstract
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, [...] Read more.
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, M = Cu, Zn, Mn) nanoparticles (diameter 20–30 nm) with controllable and stoichiometric incorporation of transition metal dopants on the Cu-site. To produce pellets for thermoelectric characterization, the densification process by spark plasma sintering was optimized for individual samples based on thermal stability determined using differential scanning calorimetry and thermogravimetric analysis. Electronic transport properties of undoped and doped famatinite nanoparticles were studied from 225–575 K, and the thermoelectric power factor was calculated. This is the first time electronic transport properties of famatinite doped with Zn or Mn have been studied. All famatinite samples had similar resistivities (>0.8 mΩ·m) in the measured temperature range. However, the Mn-doped famatinite nanomaterials exhibited a thermoelectric power factor of 10.3 mW·m−1·K−1 at 575 K, which represented a significant increase relative to the undoped nanomaterials and Zn-doped nanomaterials engendered by an elevated Seebeck coefficient of ~220 µV·K−1 at 575 K. Future investigations into optimizing the thermoelectric properties of Mn-doped famatinite nanomaterials are promising avenues of research for producing low-cost, environmentally friendly, high-performing thermoelectric materials. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

10 pages, 2242 KB  
Article
Direct Writing of Metal Nanostructures with Focused Helium Ion Beams
by Vladimir Bruevich, Leila Kasaei, Leonard C. Feldman and Vitaly Podzorov
Electron. Mater. 2024, 5(4), 293-302; https://doi.org/10.3390/electronicmat5040018 - 14 Nov 2024
Viewed by 2343
Abstract
A helium ion microscope (HIM) with a focused He+-ion beam of variable flux and energy can be used as a tool for local nanoscale surface modification. In this work, we demonstrate a simple but versatile use of the HIM focused He [...] Read more.
A helium ion microscope (HIM) with a focused He+-ion beam of variable flux and energy can be used as a tool for local nanoscale surface modification. In this work, we demonstrate a simple but versatile use of the HIM focused He ion beam to fabricate conducting metallic nano- and microstructures on arbitrary substrates of varied types and shapes by directly patterning pre-deposited initially discontinuous and highly insulating (>10 TΩ/sq.) ultrathin metal films. Gold or silver films, measuring 3 nm in thickness, thermally evaporated on solid substrates have a discontinuous nanocluster morphology. Such highly resistive films can be made locally conductive using moderate doses (2 × 1016–1017 cm−2) of low-energy (30 KeV) ion bombardment. We show that an HIM can be used to directly “draw” Au and Ag conductive lines and other patterns with a variable sheet resistance as low as 10 kΩ/sq. without the use of additional precursors. This relatively straightforward, high-definition technique of direct writing with an ion beam, free from complex in vacuo catalytic or precursor chemistries, opens up new opportunities for directly fabricating elements of conformal metallic nanocircuits (interconnects, resistors, and contacts) on arbitrary organic or inorganic substrates, including those with highly curved surfaces. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 8104 KB  
Review
Recent Advances in Triboelectric Materials for Active Health Applications
by Chang Peng, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang and Bao Yang
Electron. Mater. 2025, 6(4), 16; https://doi.org/10.3390/electronicmat6040016 - 23 Oct 2025
Viewed by 451
Abstract
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the [...] Read more.
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the efficiency and reliability of triboelectric devices. In the context of active health, triboelectric materials not only serve as the core functional layers for self-powered sensing but also enable real-time physiological monitoring, motion tracking, and human–machine interaction by directly transducing biomechanical signals into electrical information. Soft triboelectric sensors exhibit high sensitivity, wide operational ranges, excellent biocompatibility, and wearability, making them highly promising for active health monitoring applications. Despite these advantages, challenges remain in enhancing surface charge density, achieving effective signal multiplexing, and ensuring long-term stability. This review provides a comprehensive overview of triboelectric mechanisms, working modes, influencing factors, performance enhancement strategies, and wearable health applications. Finally, it systematically summarizes the key improvement approaches and future development directions of triboelectric materials for active health, offering valuable guidance for advancing wearable self-powered biosensors. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

Back to TopTop