Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (422)

Search Parameters:
Keywords = high temperature heat pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 327
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 348
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

20 pages, 2768 KiB  
Article
Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators
by Andrea Vecchi, Jose Hector Bastida Hernandez and Adriano Sciacovelli
Energies 2025, 18(14), 3806; https://doi.org/10.3390/en18143806 - 17 Jul 2025
Viewed by 254
Abstract
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply [...] Read more.
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply via HTHPs and aims to assess how variations in power input that result from flexible HTHP operation may affect steam flow and temperature, both with and without a downstream steam accumulator (SA). First, steady-state modelling is used for system design. Then, dynamic component models are developed and used to simulate the system response to HTHP power input variations. The performance of different SA integration layouts and sizes is evaluated. Results demonstrate that steam supply fluctuations closely follow changes in HTHP operation. A downstream SA is shown to mitigate these variations to an extent that depends on its capacity. Practical SA sizing recommendations are derived, which allow for the containment of steam supply fluctuations within acceptability. By providing a basis for evaluating the financial viability of flexible HTHP operation for steam provision, the results support clean technology’s development and uptake in industrial steam and district heating networks. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

25 pages, 5272 KiB  
Review
Research Progress of Heat Damage Prevention and Control Technology in Deep Mine
by Yujie Xu, Liu Chen, Jin Zhang and Haiwei Ji
Sustainability 2025, 17(13), 6200; https://doi.org/10.3390/su17136200 - 6 Jul 2025
Viewed by 345
Abstract
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage [...] Read more.
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage mechanisms, and explores deep mine cooling technologies. Traditional deep mine cooling technologies employ mechanical refrigeration to cool air. While these technologies can mitigate heat damage, they are associated with issues including high energy consumption, insufficient dehumidification, and significant cold loss. To address the high energy consumption and fully utilize geothermal resources, heat pump technology and combined cooling, heating, and power technology are employed to recover waste heat from deep mines, thereby achieving efficient mine cooling and energy utilization. To enhance the effectiveness of air dehumidification, the integration of deep dehumidification with mine cooling technology addresses the high humidity ratio in mine working faces. To enhance the refrigeration capacity of the system, liquid-phase-change refrigeration technology is employed to boost the refrigeration capacity. For the future development of deep mine cooling technology, this paper identifies four key directions: the integration of diverse technologies, collaboration cooling and geothermal mining, deep dehumidification and cooling, and intelligent control. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 5159 KiB  
Article
Energy-Efficient AC Electrothermal Microfluidic Pumping via Localized External Heating
by Diganta Dutta, Lanju Mei, Xavier Palmer and Matthew Ziemke
Appl. Sci. 2025, 15(13), 7369; https://doi.org/10.3390/app15137369 - 30 Jun 2025
Viewed by 250
Abstract
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating [...] Read more.
In this study, we present a comprehensive numerical investigation of alternating-current electrothermal (ACET) pumping strategies tailored for energy-efficient microfluidic applications. Using coupled electrokinetic and thermal multiphysics simulations in narrow microchannels, we systematically explore the effects of channel geometry, electrode asymmetry and external heating on flow performance and thermal management. A rigorous mesh convergence study confirms velocity deviations below ±0.006 µm/s across the entire operating envelope, ensuring reliable prediction of ACET-driven flows. We demonstrate that increasing channel height from 100 µm to 500 µm reduces peak temperatures by up to 79 K at a constant 2 W heat input, highlighting the critical role of channel dimensions in convective heat dissipation. Introducing a localized external heat source beneath asymmetric electrode pairs enhances convective circulations, while doubling the fluid’s electrical conductivity yields a ~29% increase in net flow rate. From these results, we derive practical design guidelines—combining asymmetric electrode layouts, tailored channel heights, and external heat bias—to realize self-regulating, low-power microfluidic pumps. Such devices hold significant promises for on-chip semiconductor cooling, lab-on-a-chip assays and real-time thermal control in high-performance microelectronic and analytical systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

24 pages, 2961 KiB  
Article
Thermo-Hydrodynamic Features of Grooved Heat Sink with Droplet-Shaped Fins Based on Taguchi Optimization and Field Synergy Analysis
by Lin Zhong, Jingli Shi, Yifan Li and Zhipeng Wang
Energies 2025, 18(13), 3396; https://doi.org/10.3390/en18133396 - 27 Jun 2025
Viewed by 259
Abstract
In recent years, the number of transistors on electronic chips has surpassed Moore’s law, resulting in overheating and energy consumption problems in data centers (DCs). Chip-level microchannel cooling is expected to address these challenges. Grooved heat sinks with droplet-shaped fins were introduced to [...] Read more.
In recent years, the number of transistors on electronic chips has surpassed Moore’s law, resulting in overheating and energy consumption problems in data centers (DCs). Chip-level microchannel cooling is expected to address these challenges. Grooved heat sinks with droplet-shaped fins were introduced to modify the overall capability of the cooling system. The degree of impact of the distribution of grooves and fins was analyzed and optimized using the Taguchi method. Moreover, the coupling effect of flow and temperature fields was explained using the field synergy theory. The key findings are as follows: for thermal resistance, pump power, and overall efficiency, the influence degree is the number of combined units > number of fins in each unit > distribution of the combined units. The optimal configuration of 21 combined units arranged from dense to sparse with one fin in each unit achieves 14.05% lower thermal resistance and 8.5% higher overall efficiency than the initial heat sink. The optimal configuration of five combined units arranged from sparse to dense with one fin in each unit reduces the power energy consumption by 27.61%. After optimization, the synergy angle between the velocity vector and temperature gradient is reduced by 4.29% compared to the smooth heat sink. The coupling effect between flow and heat transport is strengthened. The optimized configuration can better balance heat dissipation and energy consumption, improve the comprehensive capability of cooling system, provide a feasible solution to solve the problems of local overheating and high energy consumption in DCs. Full article
Show Figures

Figure 1

15 pages, 1396 KiB  
Article
Modeling and Key Parameter Interaction Analysis for Ship Central Cooling Systems
by Xin Wu, Ping Zhang, Pan Su and Jiechang Wu
Appl. Sci. 2025, 15(13), 7241; https://doi.org/10.3390/app15137241 - 27 Jun 2025
Viewed by 259
Abstract
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network [...] Read more.
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network method. Then, simulation experiments were designed using the Box–Behnken design (BBD) method to study the effects of five key parameters—main engine power, seawater temperature, seawater pump speed, low-temperature fresh water three-way valve opening, and low-temperature fresh water flow rate—on system energy consumption. Based on the simulation data, an energy consumption prediction model was constructed using response surface methodology (RSM). This prediction model exhibited excellent goodness of fit and prediction ability (coefficient of determination R2 = 0.9688, adjusted R2adj = 0.9438, predicted R2pred = 0.8752), with a maximum relative error of only 1.2% compared to the simulation data, confirming its high accuracy. Sensitivity analysis based on this prediction model indicated that main engine power, seawater pump speed, seawater temperature, and three-way valve opening were the dominant single factors affecting energy consumption. Further analysis revealed a significant interaction between main engine power and seawater pump speed. This interaction resulted in non-linear changes in system energy consumption, which were particularly prominent under operating conditions such as high power. This study provides an accurate prediction model and theoretical guidance on the influence patterns of key parameters for the simulation-driven design, operational optimization, and energy saving of ship central cooling systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

20 pages, 845 KiB  
Article
Designing a Waste Heat Recovery Heat Exchanger for Polymer Electrolyte Membrane Fuel Cell Operation in Medium-Altitude Unmanned Aerial Vehicles
by Juwon Jang, Jaehyung Choi, Seung-Jun Choi and Seung-Gon Kim
Energies 2025, 18(13), 3262; https://doi.org/10.3390/en18133262 - 22 Jun 2025
Viewed by 355
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. [...] Read more.
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. Therefore, an effective preheating system is required to ensure stable PEMFC operation in high-altitude environments. This study aimed to mathematically model a shell-and-tube heat exchanger that utilizes waste heat recovery to prevent internal and external PEMFC damage in cold, high-altitude conditions. The waste heat from the PEMFC is estimated based on the thrust of the MQ-9 Reaper, and the proposed heat exchanger must be capable of heating air to −5 °C. As the heat exchanger utilizes only waste heat, the primary energy consumption arises from the coolant pumping process. Calculation results indicated that the proposed heat exchanger design improved the overall system efficiency by up to 15.7%, demonstrating its effectiveness in utilizing waste heat under aviation conditions. Full article
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 630
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

20 pages, 3672 KiB  
Article
Comparative Analysis of Transcritical CO2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective
by Xiang Qin, Shihao Lei, Heyu Liu, Yinghao Zeng, Yajun Liu, Caiyan Pang and Jiaheng Chen
Energies 2025, 18(12), 3223; https://doi.org/10.3390/en18123223 - 19 Jun 2025
Viewed by 666
Abstract
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key [...] Read more.
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key innovation of this work lies in the integration of an ejector into the dual-source system, aiming to improve system performance and energy efficiency. This study systematically compares the conventional circulation mode and the proposed ejector-assisted circulation mode in terms of system performance, exergy efficiency, and the economic payback period. Experimental results reveal that the ejector-assisted mode not only achieves a higher water outlet temperature and reduces compressor power consumption but also improves the system’s exergy efficiency by 6.6% under the condition of the maximum outlet water temperature. Although the addition of the ejector increases initial manufacturing and maintenance costs, the payback periods of the two modes remain nearly the same. These findings confirm the feasibility and advantage of incorporating an ejector into a transcritical CO2 compression/ejection heat pump system with integrated air and water sources, offering a promising solution for efficient and environmentally friendly high-temperature water heating applications. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

24 pages, 3957 KiB  
Article
Steam Generation for Industry Using Linear Fresnel Solar Collectors and PV-Driven High-Temperature Heat Pumps: Techno-Economic Analysis
by Antonio Famiglietti and Ruben Abbas
Solar 2025, 5(2), 27; https://doi.org/10.3390/solar5020027 - 17 Jun 2025
Viewed by 434
Abstract
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective [...] Read more.
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective systems. Concentrating solar thermal technologies are attracting attention as a heat source for industrial steam generation. In addition, electricity-driven high-temperature heat pumps can provide heat using either renewable or grid electricity by upgrading ambient or waste heat to the required temperature level. In this study, linear Fresnel solar collectors and high-temperature heat pumps driven by photovoltaics are considered heat sources for steam generation in industrial processes. Energetic and economic analyses are performed across the European countries to assess and compare their performances. The results demonstrate that for a given available area for the solar field, solar thermal systems provide a higher annual energy yield in southern countries and at lower costs than heat pumps. On the other hand, heat pumps driven by photovoltaics provide higher annual energy for decreasing solar radiation conditions (central and northern Europe), although it leads to higher costs than solar thermal systems. A hybrid scheme combining the two technologies is the favorable option in central Europe, allowing a trade-off between the costs and the energy yield per unit area. Full article
Show Figures

Figure 1

12 pages, 5133 KiB  
Article
Exploring the Impact of Inlet Velocity Distribution on the Thermal Performance of a Laser Rod in a Diode Side-Pumped Amplifier
by Shuzhen Nie, Jinglan Lin, Tianzhuo Zhao and Xiaolong Liu
Photonics 2025, 12(6), 603; https://doi.org/10.3390/photonics12060603 - 12 Jun 2025
Viewed by 823
Abstract
Research on the thermal analysis of laser diode (LD) side-pumped amplifiers is a critical step in the design of high-power solid-state laser systems. Instead of adopting a standard solid modeling approach that only considers a laser rod, a fluid–structure interaction model is employed [...] Read more.
Research on the thermal analysis of laser diode (LD) side-pumped amplifiers is a critical step in the design of high-power solid-state laser systems. Instead of adopting a standard solid modeling approach that only considers a laser rod, a fluid–structure interaction model is employed for analysis using the FLUENT 2021 R1 software. This model integrates the cooling structure, coolant, and laser rod, incorporating their relevant material parameters. By considering both uniform and non-uniform inlet velocity distributions as loading conditions, the study reveals remarkably different thermal simulation results. The correlation between thermal analysis outcomes and the total inlet flow rates is calculated, while temperature and stress distributions are obtained under a varying internal heat source. It was observed that the non-uniform inlet velocity distribution has little impact on the rod’s maximum temperature but significantly influences the maximum equivalent stress. This finding underscores the necessity of accounting for non-uniform inlet distributions during the design of laser amplifiers to achieve more accurate thermal simulation results and optimize structural reliability. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

31 pages, 4590 KiB  
Article
A Semi-Analytical Dynamic Model for Ground Source Heat Pump Systems: Addressing Medium- to Long-Term Performance Under Ground Temperature Variations
by Mohammad Mahmoudi Majdabadi and Seama Koohi-Fayegh
Sustainability 2025, 17(12), 5391; https://doi.org/10.3390/su17125391 - 11 Jun 2025
Viewed by 689
Abstract
As the demand for sustainable heating, ventilation, and air conditioning (HVAC) solutions rises, ground source heat pumps (GSHPs) offer high efficiency but are sensitive to subsurface thermal dynamics. The overall objective of this study is to evaluate the impact of ground temperature variations [...] Read more.
As the demand for sustainable heating, ventilation, and air conditioning (HVAC) solutions rises, ground source heat pumps (GSHPs) offer high efficiency but are sensitive to subsurface thermal dynamics. The overall objective of this study is to evaluate the impact of ground temperature variations on GSHP performance by proposing a semi-analytical dynamic model capable of simulating medium- to long-term heat pump operations. The proposed model accounts for the interactions between the ground heat exchanger (GHE) and the heat pump. A case study using the proposed model demonstrates how ground temperature variations from external factors affect the coefficient of performance (COP) and the heating and cooling capacity of GSHP systems. For ±5 °C ground shifts, the heating capacity falls below peak demand if the subsurface temperature drops by more than 2 °C, requiring supplemental heating. Peak cooling and capacity vary by less than 1% and 3% for every unit of ground temperature change (°C), respectively. These results quantify both the resilience and limits of GSHP sustainability under realistic thermal disturbances. Full article
(This article belongs to the Special Issue Ground Source Heat Pump and Renewable Energy Hybridization)
Show Figures

Figure 1

25 pages, 4443 KiB  
Article
Experimental Investigation of the Influence of Climatic Conditions and Vehicle Dynamics on the Thermal Management System of a Fuel Cell Electric Vehicle
by Yannick Heynen, Ralf Liedtke, Michael Schier and Florian Heckert
Energies 2025, 18(11), 2995; https://doi.org/10.3390/en18112995 - 5 Jun 2025
Viewed by 561
Abstract
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in [...] Read more.
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in thermal derating of the fuel cell stack. Experimental investigations on a production vehicle with a fuel cell drive (Hyundai Nexo) are conducted to analyze the influence of climatic boundary conditions and a dynamic driving scenario on the thermal management system of the vehicle. Therefore, a new method based on energy balances is introduced to indirectly measure the average cooling air velocity at the cooling module. The results indicate that the two high-power radiator fans effectively maintain a high cooling airflow between a vehicle speed of approximately 30 and 100 km/h, leading to efficient heat rejection at the cooling module largely independent of vehicle speed. Furthermore, this study reveals that the efficiency of the fuel cell system is notably affected by ambient air temperature, attributed to the load on the electric air compressor (EAC) as well as on cooling system components like cooling pump and radiator fans. However, at the stack level, balance of plant (BoP) components demonstrate the ability to ensure ambient temperature-independent performance, likely due to reliable humidification control up to 45 °C. Additionally, a new method for determining thermal derating of FCEVs on roller dynamometer tests is presented. A real-world uphill drive under ambient temperatures exceeding 40 °C demonstrates derating occurring in 6.3% of the time, although a worst case with an aged stack and high payload is not investigated in this study. Finally, a time constant of 50 s is found to be suitable to correlate the average fuel cell stack power with a coolant temperature at the stack inlet, which gives information on the thermal inertia of the system observed and can be used for future simulation studies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

21 pages, 4192 KiB  
Article
Analysis of Operation Characteristics of Phase-Change Temperature Maintenance System Heating by Solar Source and Sewage Source Heat Pump
by Qingfu Zuo, Qing Wu and Shangwen Zhu
Processes 2025, 13(6), 1676; https://doi.org/10.3390/pr13061676 - 27 May 2025
Viewed by 318
Abstract
To address the issues of high energy consumption and operating costs in the temperature maintenance and heating of floating roof oil tanks, a phase-change temperature maintenance simulation system using a solar source–sewage source heat pump was designed. Its operating characteristics and economic benefits [...] Read more.
To address the issues of high energy consumption and operating costs in the temperature maintenance and heating of floating roof oil tanks, a phase-change temperature maintenance simulation system using a solar source–sewage source heat pump was designed. Its operating characteristics and economic benefits were studied based on the TRNSYS platform. The study analyzed the effects of the solar energy guarantee rate, phase-change heat storage tank operating temperature, and sewage source heat pump operating temperature on various indicators, such as the heat storage and release efficiency of the phase-change heat storage tank, the heating capacity and energy proportion of crude oil, and the power consumption of the sewage source heat pump system. The economic benefits were also compared. The results indicate that when the solar energy guarantee rate is below 30%, the phase-change heat storage tank does not operate, while the sewage source heat pump operates at a higher efficiency, leading to increased system power consumption. However, when the solar energy guarantee rate exceeds 30%, the phase-change heat storage tank operates normally from April to December, while the sewage source heat pump ceases to function, resulting in reduced total system power consumption. Additionally, increasing the phase-change temperature from 38 °C to 54 °C boosts the heat storage and release efficiency of the phase-change heat storage tank from 87% to 94%, without affecting the heat pump’s heating capacity. Similarly, raising the temperature of the sewage source heat pump from 20 °C to 40 °C enhances the heat pump’s heating capacity and efficiency from 4.45 to 4.84, without impacting the heat storage and release efficiency of the phase-change heat storage tank. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

Back to TopTop