Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,398)

Search Parameters:
Keywords = high stress concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5638 KiB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

14 pages, 650 KiB  
Review
Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
by Fábio Ramos Costa, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(15), 1206; https://doi.org/10.3390/cells14151206 - 6 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked [...] Read more.
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked factor influencing therapeutic efficacy. Senescent platelets display reduced granule content, impaired responsiveness, and heightened pro-inflammatory behavior, all of which can compromise tissue repair and regeneration. This review explores the mechanisms underlying platelet aging, including oxidative stress, mitochondrial dysfunction, and systemic inflammation, and examines how these factors influence PRP performance across diverse clinical contexts. We discuss the functional consequences of platelet senescence, the impact of comorbidities and aging on PRP quality, and current tools to assess platelet functionality, such as HLA-I–based flow cytometry. In addition, we present strategies for pre-procedural optimization, advanced processing techniques, and adjunctive therapies aimed at enhancing platelet quality. Finally, we challenge the prevailing emphasis on high-volume blood collection, highlighting the limitations of quantity-focused protocols and advocating for a shift toward biologically precise, function-driven regenerative interventions. Recognizing and addressing platelet senescence is a key step toward unlocking the full therapeutic potential of PRP-based interventions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

15 pages, 4160 KiB  
Article
Evaluation of the Stress-Shielding Effect of a PEEK Knee Prosthesis. A Finite Element Study
by Mario Ceddia, Arcangelo Morizio, Giuseppe Solarino and Bartolomeo Trentadue
Osteology 2025, 5(3), 24; https://doi.org/10.3390/osteology5030024 - 5 Aug 2025
Abstract
Background: The long-term success of total knee arthroplasty (TKA) is often compromised by stress shielding, which can lead to bone resorption and even implant loosening. This study employs finite element analysis (FEA) to compare the stress-shielding effects of a knee prosthesis made from [...] Read more.
Background: The long-term success of total knee arthroplasty (TKA) is often compromised by stress shielding, which can lead to bone resorption and even implant loosening. This study employs finite element analysis (FEA) to compare the stress-shielding effects of a knee prosthesis made from polyether ether ketone (PEEK) with a traditional titanium Ti6Al4V implant on an osteoporotic tibial bone model. Methods: Stress distribution and the stress-shielding factor (SSF) were evaluated at seven critical points in the proximal tibia under physiological loading conditions. Results: Results indicate that the PEEK prosthesis yields a more uniform stress transmission, with von Mises stress levels within the optimal 2–3 MPa range for bone maintenance and consistently negative or near-zero SSF values, implying minimal stress shielding. Conversely, titanium implants exhibited significant stress shielding with high positive SSF values across all points. Additionally, stress concentrations on the polyethylene liner were lower and more evenly distributed in the PEEK model, suggesting reduced wear potential. Conclusions: These findings highlight the biomechanical advantages of PEEK in reducing stress shielding and preserving bone integrity, supporting its potential use to improve implant longevity in TKA. Further experimental and clinical validation are warranted. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Diseases)
Show Figures

Figure 1

18 pages, 13224 KiB  
Article
The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy
by Josef Pešička, Jozef Veselý, Robert Král, Stanislav Daniš, Peter Minárik, Eliška Jača and Jana Šmilauerová
Materials 2025, 18(15), 3675; https://doi.org/10.3390/ma18153675 - 5 Aug 2025
Abstract
In this work, the microstructure and mechanical properties of the FeAlCrNiV complex concentrated alloy (CCA) were studied in the as-cast and annealed states. The material was annealed at 800 °C for 16 days to test microstructure stability and phase evolution. It was found [...] Read more.
In this work, the microstructure and mechanical properties of the FeAlCrNiV complex concentrated alloy (CCA) were studied in the as-cast and annealed states. The material was annealed at 800 °C for 16 days to test microstructure stability and phase evolution. It was found that the microstructure does not differ in the two investigated states, and the results of differential scanning calorimetry and dilatometry showed that there is almost no difference in the thermal response between the as-cast and annealed states. Both investigated states exhibit eutectic structure with bcc solid solution and ordered phase with B2 symmetry. In a single grain, several regions with B2 laths in the bcc matrix were observed. Inside the B2 laths and in the bcc matrix, bcc spheres and B2 spheres were observed, respectively. All three features—laths, matrix and spheres—are fully crystallographically coherent. Nevertheless, in the adjacent region in the grain, the crystal structure of the matrix, laths and sphere changed to the other structure, i.e., the characteristics of the microstructure feature with B2 symmetry changed to bcc, and vice versa. Compression deformation tests were performed for various temperatures from room temperature to 800 °C. The results showed that the material exhibits exceptional yield stress values, especially at high temperatures (820 MPa/800 °C), and excellent plasticity (25%). Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

18 pages, 1588 KiB  
Article
EEG-Based Attention Classification for Enhanced Learning Experience
by Madiha Khalid Syed, Hong Wang, Awais Ahmad Siddiqi, Shahnawaz Qureshi and Mohamed Amin Gouda
Appl. Sci. 2025, 15(15), 8668; https://doi.org/10.3390/app15158668 (registering DOI) - 5 Aug 2025
Abstract
This paper presents a novel EEG-based learning system designed to enhance the efficiency and effectiveness of studying by dynamically adjusting the difficulty level of learning materials based on real-time attention levels. In the training phase, EEG signals corresponding to high and low concentration [...] Read more.
This paper presents a novel EEG-based learning system designed to enhance the efficiency and effectiveness of studying by dynamically adjusting the difficulty level of learning materials based on real-time attention levels. In the training phase, EEG signals corresponding to high and low concentration levels are recorded while participants engage in quizzes to learn and memorize Chinese characters. The attention levels are determined based on performance metrics derived from the quiz results. Following extensive preprocessing, the EEG data undergoes several feature extraction steps: removal of artifacts due to eye blinks and facial movements, segregation of waves based on their frequencies, similarity indexing with respect to delay, binary thresholding, and (PCA). These extracted features are then fed into a k-NN classifier, which accurately distinguishes between high and low attention brain wave patterns, with the labels derived from the quiz performance indicating high or low attention. During the implementation phase, the system continuously monitors the user’s EEG signals while studying. When low attention levels are detected, the system increases the repetition frequency and reduces the difficulty of the flashcards to refocus the user’s attention. Conversely, when high concentration levels are identified, the system escalates the difficulty level of the flashcards to maximize the learning challenge. This adaptive approach ensures a more effective learning experience by maintaining optimal cognitive engagement, resulting in improved learning rates, reduced stress, and increased overall learning efficiency. Our results indicate that this EEG-based adaptive learning system holds significant potential for personalized education, fostering better retention and understanding of Chinese characters. Full article
(This article belongs to the Special Issue EEG Horizons: Exploring Neural Dynamics and Neurocognitive Processes)
Show Figures

Figure 1

13 pages, 545 KiB  
Article
Harnessing Glutamicibacter sp. to Enhance Salinity Tolerance in the Obligate Halophyte Suaeda fruticosa
by Rabaa Hidri, Farah Bounaouara, Walid Zorrig, Ahmed Debez, Chedly Abdelly and Ouissal Metoui-Ben Mahmoud
Int. J. Plant Biol. 2025, 16(3), 86; https://doi.org/10.3390/ijpb16030086 (registering DOI) - 5 Aug 2025
Viewed by 19
Abstract
Salinization hinders the restoration of vegetation in salt-affected soils by negatively impacting plant growth and development. Halophytes play a key role in the restoration of saline and degraded lands due to unique features explaining their growth aptitude in such extreme ecosystems. Suaeda fruticosa [...] Read more.
Salinization hinders the restoration of vegetation in salt-affected soils by negatively impacting plant growth and development. Halophytes play a key role in the restoration of saline and degraded lands due to unique features explaining their growth aptitude in such extreme ecosystems. Suaeda fruticosa is an euhalophyte well known for its medicinal properties and its potential for saline soil phytoremediation. However, excessive salt accumulation in soil limits the development of this species. Research findings increasingly advocate the use of extremophile rhizosphere bacteria as an effective approach to reclaim salinized soils, in conjunction with their salt-alleviating effect on plants. Here, a pot experiment was conducted to assess the role of a halotolerant plant growth-promoting actinobacterium, Glutamicibacter sp., on the growth, nutritional status, and shoot content of proline, total soluble carbohydrates, and phenolic compounds in the halophyte S. fruticosa grown for 60 d under high salinity (600 mM NaCl). Results showed that inoculation with Glutamicibacter sp. significantly promoted the growth of inoculated plants under stress conditions. More specifically, bacterial inoculation increased the shoot concentration of proline, total polyphenols, potassium (K+), nitrogen (N), and K+/Na+ ratio in shoots, while significantly decreasing Na+ concentrations. These mechanisms partly explain S. fruticosa tolerance to high saline concentrations. Our findings provide some mechanistic elements at the ecophysiological level, enabling a better understanding of the crucial role of plant growth-promoting rhizobacteria (PGPRs) in enhancing halophyte growth and highlight their potential for utilization in restoring vegetation in salt-affected soils. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

15 pages, 1539 KiB  
Article
Microplastics Induce Structural Color Deterioration in Fish Poecilia reticulata Mediated by Oxidative Stress
by Hong-Yu Ren, Huan-Chao Ma, Rui-Peng He, Cong-Cong Gao, Bin Wen, Jian-Zhong Gao and Zai-Zhong Chen
Fishes 2025, 10(8), 382; https://doi.org/10.3390/fishes10080382 - 5 Aug 2025
Viewed by 50
Abstract
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and [...] Read more.
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and structural coloration in blue strain guppy fish (Poecilia reticulata). Results showed exposure to 160 μg/L MPs significantly reduced specific growth rate of fish compared to controls. Plastic accumulation followed a dose-dependent pattern, especially within gut concentrations. Oxidative stress responses differed between MPs and NPs: 160 μg/L MPs decreased SOD activity in skin and reduced GSH levels, while 160 μg/L NPs increased MDA levels in gut tissues, indicating severe lipid peroxidation. Structural coloration analysis revealed exposure to 160 μg/L MPs decreased lightness and increased yellowness, demonstrating reduced blue coloration. This was accompanied by an increase in skin uric acid content, suggesting that guanine conversion might occur to combat oxidative stress. These findings demonstrate that MPs, particularly at high concentrations, impair growth and induce oxidative stress in guppies. To counteract stress, guanine in iridophores may be converted into uric acid, leading to a decline in structural coloration. This study is the first to reveal that MPs disrupt structural coloration of fish, providing new insights into the ecological risks of plastic pollution on aquatic organisms. Full article
(This article belongs to the Special Issue Impact of Climate Change and Adverse Environments on Aquaculture)
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Viewed by 166
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 745 KiB  
Review
Salivary Biomarkers for Early Detection of Autism Spectrum Disorder: A Scoping Review
by Margherita Tumedei, Niccolò Cenzato, Sourav Panda, Funda Goker and Massimo Del Fabbro
Oral 2025, 5(3), 56; https://doi.org/10.3390/oral5030056 - 4 Aug 2025
Viewed by 94
Abstract
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and [...] Read more.
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and methods: A search was conducted on the electronic databases PUBMED/Medline, Google Scholar and Scopus for the retrieval of articles concerning the study topic. Results: A total of 22 studies have been included in the present review considering 21 articles identified from databases and 1 article included using a manual search. A wide range of biomarkers have been proposed for early detection of ASD diseases including nonspecific inflammation markers like interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNFα), oxidative stress markers like superoxide dismutase and glutathione peroxidase, hormones such as cortisol and oxytocin, various microRNAs including miR-21, miR-132 and miR-137, and exosomes. The techniques used for biomarke detection may vary according to molecule type and concentration. Conclusions: salivary biomarkers could represent a potential useful tool for the primary detection of several systemic diseases including ASD, taking advantage of non-invasiveness and cost-effective capability compared to other biofluid-based diagnostic techniques. Full article
Show Figures

Figure 1

19 pages, 9234 KiB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 (registering DOI) - 4 Aug 2025
Viewed by 138
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Viewed by 192
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

20 pages, 4784 KiB  
Article
Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
by Gabriel I. Krüger, Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, Mario Tello, Luis Alvarez-Thon, Juan Castro-Severyn, Francisco Remonsellez, Alejandro Hidalgo and Claudia P. Saavedra
Microorganisms 2025, 13(8), 1812; https://doi.org/10.3390/microorganisms13081812 - 3 Aug 2025
Viewed by 221
Abstract
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce [...] Read more.
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce bacterial contaminants below acceptable levels. Despite these preventive actions, Salmonella can survive and consequently affect human health. This study investigates the adaptive capacity of the main Salmonella enterica serotypes isolated from the poultry production line, focusing on their replication, antimicrobial resistance, and biofilm formation under stressors such as acidic conditions, oxidative environment, and high osmolarity. Using growth curve analysis, crystal violet staining, and microscopy, we assessed replication, biofilm formation, and antimicrobial resistance under acidic, oxidative, and osmotic stress conditions. Disinfectant tolerance was evaluated by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of sodium hypochlorite. The antibiotic resistance was assessed using the Kirby–Bauer method. The results indicate that, in general, acidic and osmotic stress reduce the growth of Salmonella. However, no significant differences were observed specifically for serotypes Infantis, Heidelberg, and Corvallis. The S. Infantis isolates were the strongest biofilm producers and showed the highest prevalence of multidrug resistance (71%). Interestingly, S. Infantis forming biofilms required up to 8-fold higher concentrations of sodium hypochlorite for eradication. Furthermore, osmotic and oxidative stress significantly induced biofilm production in industrial S. Infantis isolates compared to a reference strain. Understanding how Salmonella responds to industrial stressors is vital for designing strategies to control the proliferation of these highly adapted, multi-resistant pathogens. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Viewed by 233
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

10 pages, 868 KiB  
Article
The Response of Cell Cultures to Nutrient- and Serum-Induced Changes in the Medium
by Marijana Leventić, Katarina Mišković Špoljarić, Karla Vojvodić, Nikolina Kovačević, Marko Obradović and Teuta Opačak-Bernardi
Sci 2025, 7(3), 105; https://doi.org/10.3390/sci7030105 - 2 Aug 2025
Viewed by 206
Abstract
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial [...] Read more.
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial function and autophagy are investigated in four human cell lines: MRC-5, HeLa, Caco-2 and SW-620. Cells were cultured in defined media for 72 h, and viability was assessed by LDH release, mitochondrial membrane potential using Rhodamine 123, ATP content by luminescence and autophagy activity by dual fluorescence staining. The results showed that HeLa and SW-620 cancer cells exhibited increased proliferation and mitochondrial activity under high glucose conditions, while low glucose media resulted in decreased ATP content and increased membrane permeability in HeLa cells. MRC-5 fibroblasts and Caco-2 cells showed greater resilience to nutrient stress, with minimal changes in LDH release and consistent proliferation. Autophagy was activated under all conditions, with a significant increase only in selected cell-medium combinations. These results highlight the importance of medium composition in influencing cellular bioenergetics and stress responses, which has implications for cancer research, metabolic disease modelling and the development of serum-free culture systems for regenerative medicine. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

Back to TopTop