The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Material
3.2. Microstructure
3.3. Mechanical Properties
Alloy | σ0.2 (MPa)/εf (%) | Temperature | σ0.2 (MPa)/εf (%) | Temperature |
CoCrFeNiTiAl0 [3] | 2460/13 | RT | - | - |
AlCoCrFeNiV0 [4] | 3300/26 | RT | - | - |
Al12Cr23Fe21Co21Ni23 [8] | 370/25 | RT | - | - |
Al0.5CoCrCuFeNi [11] | 1300/5 | RT | 100/14 | 800 °C |
Al10Co25Cr8Fe15Ni36Ti6 [13] | 680/24 | RT | 310/30 | 900 °C |
Al9V4Cr10Mn12Fe44Ni18 [14] | 800/11-17 | RT | - | - |
Nickel based superalloy [44] | 1160/21 | RT | 1000/21 | 750 °C |
Particle hardening steels [45] | 1350/12 | RT | - | - |
4. Conclusions
- The microstructures of the as-cast and annealed states have a characteristic eutectic mixture of bcc and B2 phase. At the first level, phases separate into matrix and laths approx. 200–300 nm wide and about 1000 nm long. The laths with B2 symmetry are oriented along the [100] direction. The laths are surrounded by a matrix with bcc symmetry. Within one grain, there are several regions with a size of 20–100 µm, in which one region has the structure described above, but in the neighboring region, the crystallographic symmetry of the phases is reversed. This means that the laths have bcc symmetry, while the matrix has B2 symmetry.
- At higher magnification, both phases contain small (20–50 nm) spherical particles of the complementary phase (bcc in B2, B2 in bcc). These seem to have formed only at distances greater than about 100 nm from the phase boundary; therefore, thinner laths or parts of the matrix are free of these spheres. All phases—matrix, laths, and spheres—are crystalographically coherent.
- In the as-cast state, very tiny D03 regions were observed. They are several nanometers in size and, due to this fact, it is very difficult to determine whether these regions have the characteristics of particles, structure domains, etc.
- Annealing at 800 °C for 16 days does not substantially influence the character of the structure. There are two changes connected with the diffusion of atoms: Dissolution of very tiny particles with D03 symmetry and decomposition of the bcc lattice into two lattices with very close lattice parameters (within the margin of error). These nanoscale changes cause a higher order of atoms in the material. However, the substantial features of the structure described above do not change.
- The mechanical properties of the studied EHEA alloy are very good. The yield stress reaches 1625/821 MPa for RT/800 °C for the as-cast state and 1430/580 MPa for RT/800 °C in the annealed state. For both states, the strain to fracture reaches more than 10% for RT and about 28% for 800 °C. Such results nominate this alloy as a very promising candidate for application use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Gorsse, S.; Couzinié, J.-P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. Comptes Rendus Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, Z. Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics 2012, 28, 34–39. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, C.; Liu, C.; An, X.; Chu, Z.; Feng, S.; Wei, W.; Wang, D.; Jiang, Z. Influence of microstructure transformation on mechanical performance of eutectic and near-eutectic Ni66-xFe28AlxV6 high-entropy alloys. Mater. Sci. Eng. A 2024, 909, 146826. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, X.; Wang, T.; Si, J.; Wang, L.; Wang, Y.; Hui, X. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 2015, 83, 651–660. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Wen, H.; Zhang, D.; Chen, Z.; Zheng, B.; Zhou, Y.; Lavernia, E.J. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 2016, 107, 59–71. [Google Scholar] [CrossRef]
- Ali, N.; Wang, M.; He, T.; Amar, A.; Lu, Y.; Shahid, I.; Wang, T. Exceptional strength-ductility synergy in hyper-eutectic Al19Fe20Co20Ni37.5Mo3Ta0.5 high entropy alloy with heterogeneous structure. J. Alloys Compd. 2025, 1022, 179751. [Google Scholar] [CrossRef]
- Chen, C.; Pang, S.; Cheng, Y.; Zhang, T. Microstructure and mechanical properties of Al20−xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys. J. Alloys Compd. 2016, 659, 279–287. [Google Scholar] [CrossRef]
- Carbajales, R.; Sobrino, C.; Monclús, M.; Alvaredo, P. The role of aging in the microstructure and mechanical properties of two multi-principal element alloys. Mater. Sci. Eng. A 2025, 928, 148080. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2015, 81, 428–441. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zhou, C.; Jiang, Z.; Dong, W.; An, X.; Wei, W.; Wang, D.; Guan, S.; Feng, S. Achieving 2.1 GPa ultrahigh strength in a light-weight eutectic high-entropy alloy with dual heterogeneous structures. Mater. Charact. 2025, 222, 114812. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Z.; Wu, Q.; Wei, Y.; Bai, X.; Liu, L.; Wang, J.; Liu, X.; Wang, L.; He, F.; et al. Boron microalloying for high-temperature eutectic high-entropy alloys. Acta Mater. 2024, 262, 119427. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, Q.; He, F.; Yang, Z.; Liu, L.; Liu, X.; Bai, X.; Guo, B.; Kim, H.S.; Li, J.; et al. Promoting strength–ductility synergy by mitigating heterogeneity in precipitation-strengthened FCC/B2 dual-phase high-entropy alloy. Int. J. Plast. 2025, 184, 104213. [Google Scholar] [CrossRef]
- Liu, X.; Vecchio, K. Processing, microstructure evolution and mechanical property improvements of an Al–V–Cr–Mn–Fe–Ni CCA with an as-cast BCC/B2 coherent nanostructure. Mater. Sci. Eng. A 2022, 852, 143698. [Google Scholar] [CrossRef]
- Mak, E.; Yin, B.; Curtin, W. A ductility criterion for bcc high entropy alloys. J. Mech. Phys. Solids 2021, 152, 104389. [Google Scholar] [CrossRef]
- He, M.; Shen, Y.; Jia, N.; Liaw, P. C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Appl. Mater. Today 2021, 25, 101162. [Google Scholar] [CrossRef]
- Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Jin, P. A new Al14Co28Cr28Ni30 hypoeutectic high entropy alloy with excellent tensile property. Mater. Res. Express 2019, 6, 116575. [Google Scholar] [CrossRef]
- Liu, W.; He, J.; Huang, H.; Wang, H.; Lu, Z.; Liu, C. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 2015, 60, 1–8. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Cheng, P.; Wang, Q.; Li, J.; Dang, Y.; Wang, J.; Liu, C. Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 2016, 656, 284–289. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, J.; Tan, Q.; Zhuang, W.; Mo, N.; Bermingham, M.; Zhang, M.-X. Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Mater. Des. 2019, 162, 24–33. [Google Scholar] [CrossRef]
- Ma, H.; Shek, C.H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. J. Alloys Compd. 2020, 827, 154159. [Google Scholar] [CrossRef]
- Jeong, H.; Park, H.; Kim, W. Dynamic recrystallization and hot deformation mechanisms of a eutectic Al0.7CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2021, 871, 159488. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, M.; Zhang, L.; Yu, P.; Li, R.; Liu, X.; Zhang, Y.; Li, G. Cobalt-element-free eutectic medium-entropy alloys with superior mechanical performance and processability. Mater. Sci. Eng. A 2021, 801, 140421. [Google Scholar] [CrossRef]
- Samal, S.; Rahul, M.; Kottada, R.S.; Phanikumar, G. Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy. Mater. Sci. Eng. A 2016, 664, 227–235. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, G.; Yin, K.; Cheng, W.; Wang, Y.; Huang, J. Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNix (x = 2, 3, 4) high entropy alloys. Mater. Charact. 2021, 176, 111148. [Google Scholar] [CrossRef]
- Vikram, R.; Gupta, K.; Suwas, S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy. Scr. Mater. 2021, 202, 113993. [Google Scholar] [CrossRef]
- Knapek, M.; Pešička, J.; Lukáč, P.; Minárik, P.; Král, R. Peculiar serrated flow during compression of an FeAlCrMo medium-entropy alloy. Scr. Mater. 2019, 161, 49–53. [Google Scholar] [CrossRef]
- Pešička, J.; Král, R.; Daniš, S.; Minárik, P.; Veselý, J.; Šíma, V.; Šmilauerová, J. Structure and mechanical properties of FeAlCrV and FeAlCrMo medium-entropy alloys. Mater. Sci. Eng. A 2018, 727, 184–191. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Král, R.; Daniš, S.; Pešička, J.; Minárik, P.; Veselý, J. Atom Location by Channeling-Enhanced Microanalysis (ALCHEMI) Study of Structure of Complex Concentrated Alloys Derived from FeAl Iron Aluminide. Met. Mater. Trans. A 2022, 53, 3968–3976. [Google Scholar] [CrossRef]
- Pešička, J.; Kratochvíl, P.; Král, R.; Veselý, J.; Jača, E.; Preisler, D.; Daniš, S.; Minárik, P.; Čamek, L. Structure of Complex Concentrated Alloys Derived from Iron Aluminide Fe3Al. Materials 2023, 16, 5388. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and compositional design of Ni-based single crystalline superalloys—A review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Daniš, S.; Pešička, J.; Minárik, P.; Král, R. Fe3Al Iron Aluminides Alloyed with High Concentrations of V and Cr: Their Structure and High Temperature Strength. Met. Mater. Trans. A 2018, 49, 6046–6051. [Google Scholar] [CrossRef]
- Labusch, R. A Statistical Theory of Solid Solution Hardening. Phys. Status Solidi B 1970, 41, 659–669. [Google Scholar] [CrossRef]
- Bochenek, K.; Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 2015, 79, 136–146. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Kattner, U.R.; Moon, K.W.; Perepezko, J.H. DTA and heat- flux DSC measurements of alloy melting and freezing. In Methods for Phase Diagram Determination; Elsevier Science Ltd.: London, UK, 2007; pp. 151–221. [Google Scholar] [CrossRef]
- Niewolak, L.; Garcia-Fresnillo, L.; Meier, G.; Quadakkers, W. Sigma-phase formation in high chromium ferritic steels at 650 °C. J. Alloys Compd. 2015, 638, 405–418. [Google Scholar] [CrossRef]
- Dubiel, S.M.; Cieślak, J. Sigma-Phase in Fe-Cr and Fe-V Alloy Systems and its Physical Properties. Crit. Rev. Solid State Mater. Sci. 2011, 36, 191–208. [Google Scholar] [CrossRef]
- Bowman, A.L.; Wallace, T.C.; Yarnell, J.L.; Wenzel, R.G.; Storms, E.K. The crystal structures of V2C and Ta2C. Acta Cryst. 1965, 19, 6–9. [Google Scholar] [CrossRef]
- Mao, H.; Chen, H.-L.; Chen, Q. TCHEA1: A Thermodynamic Database Not Limited for “High Entropy” Alloys. J. Phase Equilibria Diffus. 2017, 38, 353–368. [Google Scholar] [CrossRef]
- Chen, H.-L.; Mao, H.; Chen, Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater. Chem. Phys. 2018, 210, 279–290. [Google Scholar] [CrossRef]
- Liu, X.; Pei, Z.; Eisenbach, M. Dislocation core structures and Peierls stresses of the high-entropy alloy NiCoFeCrMn and its subsystems. Mater. Des. 2019, 180, 107955. [Google Scholar] [CrossRef]
- Liang, X.; Chen, J.; Yao, Y.; Ding, R.; Wang, W.; Liu, Y.; Liu, J. A novel nano-spaced coherent FCC1/FCC2 eutectic high entropy alloy. Mater. Lett. 2023, 337, 133952. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Cao, L.; Sun, Y.; Li, J.; Cheng, X.; Tian, G. Microstructures and tensile properties of a grain-size gradient nickel-based superalloy. J. Alloys Compd. 2023, 960, 170344. [Google Scholar] [CrossRef]
- Li, Z.; Chai, F.; Yang, L.; Luo, X.; Yang, C. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel. Mater. Des. 2020, 191, 108637. [Google Scholar] [CrossRef]
Phase | Alloy | Microstructure | V | Cr | Fe | Al | Ni |
---|---|---|---|---|---|---|---|
±3 at. % | |||||||
BCC | annealed | A | 29 | 30 | 28 | 7 | 6 |
B | 31 | 33 | 28 | 5 | 3 | ||
as-cast | A | 29 | 31 | 27 | 7 | 5 | |
B | 30 | 33 | 27 | 7 | 4 | ||
calculated from ThermoCalc 2022a | 34 | 34 | 25 | 5 | 2 | ||
B2 | annealed | A | 6 | 4 | 9 | 38 | 43 |
B | 8 | 6 | 10 | 38 | 39 | ||
as-cast | A | 9 | 5 | 12 | 36 | 39 | |
B | 11 | 8 | 13 | 32 | 36 | ||
calculated from ThermoCalc 2022a | 4 | 1 | 6 | 43 | 46 |
Temperature (°C) | As-Cast | Annealed State | ||||
---|---|---|---|---|---|---|
σ0.2 (MPa) | σM (MPa) | εf (%) | σ0.2 (MPa) | σM (MPa) | εf (%) | |
RT | 1625 ± 35 | 2880 ± 55 | 18 ± 2 | 1430 ± 30 | 2380 ± 46 | ≥12 ± 2 |
200 | 1542 ± 30 | 2450 ± 50 | ≥15 ± 2 | 1384 ± 28 | 2300 ± 45 | 11 ± 2 |
400 | 1417 ± 28 | 1996 ± 40 | ≥13 ± 2 | 1221 ± 24 | 2000 ± 40 | ≥13 ± 2 |
600 | 1230 ± 25 | 1677 ± 32 | ≥15 ± 2 | 1087 ± 22 | 1421 ± 30 | ≥22 ± 2 |
700 | - | - | - | 828 ± 20 | 876 ± 33 | ≥20 ± 2 |
800 | 821 ± 20 | 680 ± 25 | ≥24 ± 2 | 580 ± 15 | 608 ± 34 | ≥31 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešička, J.; Veselý, J.; Král, R.; Daniš, S.; Minárik, P.; Jača, E.; Šmilauerová, J. The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy. Materials 2025, 18, 3675. https://doi.org/10.3390/ma18153675
Pešička J, Veselý J, Král R, Daniš S, Minárik P, Jača E, Šmilauerová J. The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy. Materials. 2025; 18(15):3675. https://doi.org/10.3390/ma18153675
Chicago/Turabian StylePešička, Josef, Jozef Veselý, Robert Král, Stanislav Daniš, Peter Minárik, Eliška Jača, and Jana Šmilauerová. 2025. "The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy" Materials 18, no. 15: 3675. https://doi.org/10.3390/ma18153675
APA StylePešička, J., Veselý, J., Král, R., Daniš, S., Minárik, P., Jača, E., & Šmilauerová, J. (2025). The Structure and Mechanical Properties of FeAlCrNiV Eutectic Complex Concentrated Alloy. Materials, 18(15), 3675. https://doi.org/10.3390/ma18153675