Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = high precision metrology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4300 KiB  
Review
Thermal Control Systems in Projection Lithography Tools: A Comprehensive Review
by Di Cao, He Dong, Zhibo Zeng, Wei Zhang, Xiaoping Li and Hangcheng Yu
Micromachines 2025, 16(8), 880; https://doi.org/10.3390/mi16080880 - 29 Jul 2025
Viewed by 386
Abstract
This review examines the design of thermal control systems for state-of-the-art deep ultraviolet (DUV) and extreme ultraviolet (EUV) projection lithography tools. The lithographic system under investigation integrates several critical subsystems along the optical transmission chain, including the light source, reticle stage, projection optics [...] Read more.
This review examines the design of thermal control systems for state-of-the-art deep ultraviolet (DUV) and extreme ultraviolet (EUV) projection lithography tools. The lithographic system under investigation integrates several critical subsystems along the optical transmission chain, including the light source, reticle stage, projection optics (featuring DUV refractive lenses and EUV multilayer mirrors), immersion liquid, wafer stage, and metrology systems. Under high-power irradiation conditions with concurrent thermal perturbations, the degradation of thermal stability and gradient uniformity within these subsystems significantly compromises exposure precision. Through a systematic analysis of the thermal challenges specific to each subsystem, this review synthesizes established thermal control systems across two technical dimensions: thermal control structures and thermal control algorithms. Prospects for future advancements in lithographic thermal control are also discussed. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

29 pages, 4763 KiB  
Review
Quantum-Empowered Fiber Sensing Metrology
by Xiaojie Zuo, Zhangguan Tang, Boyao Li, Xiaoyong Chen and Jinghua Sun
Photonics 2025, 12(8), 763; https://doi.org/10.3390/photonics12080763 - 29 Jul 2025
Viewed by 323
Abstract
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing [...] Read more.
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing installations and generating high-quality optical fiber quantum states. Following decades of comprehensive investigations and remarkable advances in optical fiber quantum sensing technology, this review systematically examines research achievements in this field through two complementary perspectives: one is the basic principle of generating optical fiber quantum states and their applications in sensing and the other is optical fiber quantum interferometers and their applications in sensing. Finally, examine current opportunities and challenges as well as the future development of optical fiber quantum sensing. Full article
(This article belongs to the Special Issue Quantum High Precision Measurement)
Show Figures

Figure 1

12 pages, 5171 KiB  
Article
Investigation and Application of Key Alignment Parameters for Overlay Accuracy in 3D Structures
by Miao Jiang, Mingyi Yao, Ganlin Song, Yuxing Zhou, Jiani Su, Yuejing Qi and Jiangliu Shi
Micromachines 2025, 16(8), 876; https://doi.org/10.3390/mi16080876 - 29 Jul 2025
Viewed by 183
Abstract
With the growing adoption of 3D stacked memory structures, precise alignment and overlay control have become critical for multi-layer overlay accuracy. The metrology accuracy and stability of alignment marks are crucial to ensuring optimal alignment and overlay performance. This study systematically investigates the [...] Read more.
With the growing adoption of 3D stacked memory structures, precise alignment and overlay control have become critical for multi-layer overlay accuracy. The metrology accuracy and stability of alignment marks are crucial to ensuring optimal alignment and overlay performance. This study systematically investigates the contributions of two key alignment parameters—Wafer Quality (WQ) and Alignment Position Deviation (APD)—to the alignment model residue in 3D structures. Through experimental and simulation approaches, we analyze the interplay between WQ, APD and overlay performance. Results reveal that APD exhibits a stronger correlation with uncorrectable model residue, particularly under global process variations such as etch non-uniformity. Furthermore, APD sensitivity varies directionally (X/Y direction marks) and spatially (wafer edge versus center), highlighting the need for targeted mark designs in process-sensitive zones. These findings provide actionable insights for optimizing alignment strategies, mark designs and process monitoring throughout R&D, technology development and high-volume manufacturing phases. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

13 pages, 1220 KiB  
Article
Uncertainty Evaluation of Two-Dimensional Horizontal Distributed Photometric Sensor Based on MCM for Illuminance Measurement Task
by Jianguo Sun, Yueyao Wang, Yinbao Cheng, Guanghu Zhu, Jianwen Shao and Yuebing Sha
Sensors 2025, 25(15), 4648; https://doi.org/10.3390/s25154648 - 27 Jul 2025
Viewed by 211
Abstract
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This [...] Read more.
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This paper addresses the problem of uncertainty evaluation in photometric parameter measurement with a two-dimensional horizontal distributed photometric sensor and proposes an uncertainty evaluation framework for this task. We have established an uncertainty analysis model for the measurement system and provided two uncertainty synthesis methods, The Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method. This study designed illuminance measurement experiments to validate the feasibility of the proposed uncertainty evaluation method. The results demonstrate that the actual probability distribution of the measurement data follows a trapezoidal distribution. Furthermore, the expanded uncertainty calculated using the GUM method was 21.1% higher than that obtained by the MCM. This work effectively addresses the uncertainty evaluation challenge for illuminance measurement tasks using a two-dimensional horizontal distributed photometric sensor. The findings offer valuable reference for the uncertainty assessment of other high-precision optical instruments and possess significant engineering value in enhancing the reliability of optical metrology systems. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

23 pages, 3072 KiB  
Article
Zone-Wise Uncertainty Propagation and Dimensional Stability Assessment in CNC-Turned Components Using Manual and Automated Metrology Systems
by Mohammad S. Alsoufi, Saleh A. Bawazeer, Mohammed W. Alhazmi, Hani Alhazmi and Hasan H. Hijji
Machines 2025, 13(7), 585; https://doi.org/10.3390/machines13070585 - 6 Jul 2025
Viewed by 224
Abstract
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic [...] Read more.
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic experimental comparison was conducted between a manual Digital Vernier Caliper (DVC) and an automated Coordinate Measuring Machine (CMM) using five engineering materials: Aluminum Alloy 6061, Brass C26000, Bronze C51000, Carbon Steel 1020 Annealed, and Stainless Steel 304 Annealed. Dimensional measurements were taken from five consecutive machining zones to capture localized metrological behaviors. The results indicated that the CMM consistently achieved lower expanded uncertainty (as low as 0.00166 mm) and minimal propagated uncertainties (≤0.0038 mm), regardless of material hardness or cutting position. In contrast, the DVC demonstrated significantly higher uncertainty (up to 0.03333 mm) and propagated errors exceeding 0.035 mm, particularly in harder materials and unsupported zones affected by surface degradation and fixture variability. Root-sum-square (RSS) modeling confirmed that manual measurements are more prone to operator-induced error amplification. While the DVC sometimes recorded lower absolute errors, its substantial uncertainty margins hampered measurement reliability. To statistically validate these findings, a two-way ANOVA was performed, confirming that both the measurement system and machining zone significantly impacted uncertainty, as well as their interaction. These results emphasize the importance of material-informed and zone-sensitive metrology, highlighting the advantages of automated systems in sustaining measurement repeatability and dimensional stability in high-precision applications. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

11 pages, 7053 KiB  
Article
Advances in Optical Metrology: High-Bandwidth Digital Holography for Transparent Objects Analysis
by Manoj Kumar, Lavlesh Pensia, Karmjit Kaur, Raj Kumar, Yasuhiro Awatsuji and Osamu Matoba
Photonics 2025, 12(6), 617; https://doi.org/10.3390/photonics12060617 - 18 Jun 2025
Viewed by 485
Abstract
Accurate and non-invasive optical metrology of transparent objects is essential in several commercial and research applications, from fluid dynamics to biomedical imaging. In this work, a digital holography approach for thickness measurement of glass plate and temperature mapping of candle flame is presented [...] Read more.
Accurate and non-invasive optical metrology of transparent objects is essential in several commercial and research applications, from fluid dynamics to biomedical imaging. In this work, a digital holography approach for thickness measurement of glass plate and temperature mapping of candle flame is presented that leverages a double-field-of-view (FOV) configuration combined with high spatial bandwidth utilization (SBU). By capturing a multiplexed hologram from two distinct objects in a single shot, the system overcomes the limitations inherent to single-view holography, enabling more comprehensive object information of thickness measurement and temperature-induced refractive index variations. The method integrates double-FOV digital holography with high SBU, allowing for accurate surface profiling and mapping of complex optical path length changes caused by temperature gradients. The technique exhibits strong potential for applications in the glass industry and microfluidic thermometry, convection analysis, and combustion diagnostics, where precise thermal field measurements are crucial. This study introduces an efficient holographic framework that advances the capabilities of non-contact measurement applications by integrating double-FOV acquisition into a single shot with enhanced spatial bandwidth exploitation. The approach sets the groundwork for real-time, volumetric thermal imaging and expands the applicability of digital holography in both research and industrial settings. Full article
(This article belongs to the Special Issue Optical Imaging Innovations and Applications)
Show Figures

Figure 1

19 pages, 23096 KiB  
Article
GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement
by Thi Thu Ha Vu, Tan Hung Vo, Trong Nhan Nguyen, Jaeyeop Choi, Le Hai Tran, Vu Hoang Minh Doan, Van Bang Nguyen, Wonjo Lee, Sudip Mondal and Junghwan Oh
Appl. Sci. 2025, 15(12), 6780; https://doi.org/10.3390/app15126780 - 17 Jun 2025
Viewed by 500
Abstract
The precise identification and non-destructive measurement of structural features and defects in semiconductor wafers are essential for ensuring process integrity and sustaining high yield in advanced manufacturing environments. Unlike conventional measurement techniques, scanning acoustic microscopy (SAM) is an advanced method that provides detailed [...] Read more.
The precise identification and non-destructive measurement of structural features and defects in semiconductor wafers are essential for ensuring process integrity and sustaining high yield in advanced manufacturing environments. Unlike conventional measurement techniques, scanning acoustic microscopy (SAM) is an advanced method that provides detailed visualizations of both surface and internal wafer structures. However, in practical industrial applications, the scanning time and image quality of SAM significantly impact its overall performance and utility. Prolonged scanning durations can lead to production bottlenecks, while suboptimal image quality can compromise the accuracy of defect detection. To address these challenges, this study proposes LinearTGAN, an improved generative adversarial network (GAN)-based model specifically designed to improve the resolution of linear acoustic wafer images acquired by the breakthrough rotary scanning acoustic microscopy (R-SAM) system. Empirical evaluations demonstrate that the proposed model significantly outperforms conventional GAN-based approaches, achieving a Peak Signal-to-Noise Ratio (PSNR) of 29.479 dB, a Structural Similarity Index Measure (SSIM) of 0.874, a Learned Perceptual Image Patch Similarity (LPIPS) of 0.095, and a Fréchet Inception Distance (FID) of 0.445. To assess the measurement aspect of LinearTGAN, a lightweight defect segmentation module was integrated and tested on annotated wafer datasets. The super-resolved images produced by LinearTGAN significantly enhanced segmentation accuracy and improved the sensitivity of microcrack detection. Furthermore, the deployment of LinearTGAN within the R-SAM system yielded a 92% improvement in scanning performance for 12-inch wafers while simultaneously enhancing image fidelity. The integration of super-resolution techniques into R-SAM significantly advances the precision, robustness, and efficiency of non-destructive measurements, highlighting their potential to have a transformative impact in semiconductor metrology and quality assurance. Full article
Show Figures

Figure 1

25 pages, 32212 KiB  
Article
Remote Sensing of Seismic Signals via Enhanced Moiré-Based Apparatus Integrated with Active Convolved Illumination
by Adrian A. Moazzam, Anindya Ghoshroy, Durdu Ö. Güney and Roohollah Askari
Remote Sens. 2025, 17(12), 2032; https://doi.org/10.3390/rs17122032 - 12 Jun 2025
Viewed by 636
Abstract
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation [...] Read more.
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation sites, significantly limiting their applicability. To overcome these constraints, this study introduces a Moiré-based apparatus augmented with active convolved illumination (ACI). The system leverages the displacement-magnifying properties of Moiré patterns to achieve high precision in detecting subtle ground movements. Additionally, ACI effectively mitigates atmospheric fluctuations, reducing the distortion and alteration of measurement signals caused by these fluctuations. We validated the performance of this integrated solution through over 1900 simulations under diverse turbulence intensities. The results illustrate the synergistic capabilities of the Moiré apparatus and ACI in preserving the fidelity of Moiré fringes, enabling reliable displacement measurements even under conditions where passive methods fail. This study establishes a cost-effective, scalable, and non-invasive framework for remote seismic monitoring, offering transformative potential across geophysics, volcanology, structural analysis, metrology, and other domains requiring precise displacement measurements under extreme conditions. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

26 pages, 2927 KiB  
Article
Dimensional Accuracy and Measurement Variability in CNC-Turned Parts Using Digital Vernier Calipers and Coordinate Measuring Machines Across Five Materials
by Mohammad S. Alsoufi, Saleh A. Bawazeer, Mohammed W. Alhazmi, Hasan H. Hijji, Hani Alhazmi and Hazzaa F. Alqurashi
Materials 2025, 18(12), 2728; https://doi.org/10.3390/ma18122728 - 10 Jun 2025
Cited by 1 | Viewed by 559
Abstract
Attaining dimensional accuracy in CNC-machined parts is essential for high-precision manufacturing, especially when working with materials that exhibit varying mechanical and thermal characteristics. This research provides a thorough experimental comparison of manual and automated metrological systems, specifically the Digital Vernier Caliper (DVC) and [...] Read more.
Attaining dimensional accuracy in CNC-machined parts is essential for high-precision manufacturing, especially when working with materials that exhibit varying mechanical and thermal characteristics. This research provides a thorough experimental comparison of manual and automated metrological systems, specifically the Digital Vernier Caliper (DVC) and Coordinate Measuring Machine (CMM), as applied to five different engineering alloys through five progressively machined axial zones. The study assesses absolute error, relative error, standard deviation, and measurement repeatability, factoring in material hardness, thermal conductivity, and surface changes due to machining. The results indicate that DVC performance is significantly affected by operator input and surface irregularities, with standard deviations reaching 0.03333 mm for Bronze C51000 and relative errors surpassing 1.02% in the initial zones. Although DVC occasionally showed lower absolute errors (e.g., 0.206 mm for Aluminum 6061), these advantages were countered by greater uncertainty and poor repeatability. In comparison, CMM demonstrated enhanced precision and consistency across all materials, with standard deviations below 0.0035 mm and relative errors being neatly within the 0.005–0.015% range, even with challenging alloys like Stainless Steel 304. Furthermore, a Principal Component Analysis (PCA) was conducted to identify underlying measurement–property relationships. The PCA highlighted clear groupings based on sensitivity to error in manual versus automated methods, facilitating predictive classification of materials according to their metrological reliability. The introduction of multivariate modeling also establishes a new framework for intelligent metrology selection based on material characteristics and machining responses. These results advocate for using CMM in applications requiring precise tolerances in the aerospace, biomedical, and high-end tooling sectors, while suggesting that DVC can serve as an auxiliary tool for less critical evaluations. This study provides practical recommendations for aligning measurement techniques with Industry 4.0’s needs for accuracy, reliability, and data-driven quality assurance. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

12 pages, 1374 KiB  
Article
Dynamic Micro-Vibration Monitoring Based on Fractional Optical Vortex
by Fucheng Zou, Dechun Liu, Le Wang, Shengmei Zhao and Jialong Zhu
Photonics 2025, 12(6), 564; https://doi.org/10.3390/photonics12060564 - 4 Jun 2025
Viewed by 376
Abstract
In this study, we propose a novel approach for dynamic micro-vibration measurement based on an interferometric system utilizing a fractional optical vortex (FOV) beam as the reference and a Gaussian beam as the measurement path. The reflected Gaussian beam encodes the vibration information [...] Read more.
In this study, we propose a novel approach for dynamic micro-vibration measurement based on an interferometric system utilizing a fractional optical vortex (FOV) beam as the reference and a Gaussian beam as the measurement path. The reflected Gaussian beam encodes the vibration information of the target, which is extracted by analyzing the rotational behavior of the petal-like interference pattern formed through coaxial interference with the FOV beam. When the topological charge (TC) of the FOV beam is less than or equal to one, a single-petal structure is generated, significantly reducing the complexity of angular tracking compared to traditional multi-petals OAM-based methods. Moreover, using a Gaussian beam as the measurement path mitigates spatial distortions during propagation, enhancing the overall robustness and accuracy. We systematically investigate the effects of TC, CCD frame rate, and interference contrast on measurement performance. Experimental results demonstrate that the proposed method achieves high angular resolution with a minimum angle deviation of 18.2 nm under optimal TC conditions. The system exhibits strong tolerance to environmental disturbances, making it well-suited for applications requiring non-contact, nanometer-scale vibration sensing, such as structural health monitoring, precision metrology, and advanced optical diagnostics. Full article
(This article belongs to the Special Issue Progress in OAM Beams: Recent Innovations and Future Perspectives)
Show Figures

Figure 1

11 pages, 2104 KiB  
Article
High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection
by Yanan Miao, Fang Xie, Wentao Feng, Yifeng Zhu, Xun Zhang and Fang Liu
Sensors 2025, 25(11), 3519; https://doi.org/10.3390/s25113519 - 3 Jun 2025
Viewed by 551
Abstract
Balanced homodyne detection, which offers advantages that include low noise and strong anti-interference capabilities, is commonly used as a detection method in quantum metrology. In this article, we propose application of the balanced homodyne detection technique to the gas sensing and measurement field. [...] Read more.
Balanced homodyne detection, which offers advantages that include low noise and strong anti-interference capabilities, is commonly used as a detection method in quantum metrology. In this article, we propose application of the balanced homodyne detection technique to the gas sensing and measurement field. By constructing a Mach–Zehnder interferometer based on balanced homodyne detection, we realize high-precision measurement of the refractive index of air. The device exhibits interference efficiency of 99% and a common-mode rejection ratio of 40 dB, thus enabling dynamic monitoring of optical phase changes. Under conditions that include a stabilized temperature of 25 °C, atmospheric pressure of 100.08 kPa, and relative humidity of 30%, the refractive index of air was measured experimentally to be n=1.0002711 with a measured minimum standard deviation of 1×107. The proposed technique provides high measurement sensitivity and stability, and it also offers the advantage of noncontact measurement. Furthermore, the proposed scheme is applicable to both measurement and dynamic sensing of the refractive indices of gases, along with sensing and measurement of transparent liquids and biological samples. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

11 pages, 1374 KiB  
Article
A Preemptive Scan Speed Control Strategy Based on Topographic Data for Optimized Atomic Force Microscopy Imaging
by Thi Thu Nguyen, Oyoo Michael Juma, Luke Oduor Otieno, Thi Ngoc Nguyen and Yong Joong Lee
Actuators 2025, 14(6), 262; https://doi.org/10.3390/act14060262 - 26 May 2025
Viewed by 415
Abstract
Rapid advancement in the nanotechnology and semiconductor industries has driven the demand for fast, precise measurement systems. Atomic force microscopy (AFM) is a standout metrology technique due to its high precision and wide applicability. However, when operated at high speeds, the quality of [...] Read more.
Rapid advancement in the nanotechnology and semiconductor industries has driven the demand for fast, precise measurement systems. Atomic force microscopy (AFM) is a standout metrology technique due to its high precision and wide applicability. However, when operated at high speeds, the quality of AFM images often deteriorates, especially in areas where sharp topographic features are present. This occurs because the feedback speed of the Z-scanner cannot keep up with the sample height changes during raster scanning. This study presents a simple variable scan speed control strategy for improving AFM imaging speed while maintaining the image quality obtained at low scan speeds. The proposed strategy aims to leverage the similarity in the height profiles between successive scan lines. The topographic information collected from the previous line scan is used to assess the surface complexity and to adjust the scan speed for the following line scan. The AFM system with this variable speed control algorithm was found to reduce the scan time needed for one AFM image by over 50% compared to the fixed-speed scanning while maintaining the similar level of accuracy. The calculated mean square errors (MSEs) show that the combination of speed adjustments and preemptive surface topography prediction has successfully allowed us to suppress the potential oscillations during the speed adjustment process, thereby enhancing the stability of the adaptive AFM system as well. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

13 pages, 5808 KiB  
Article
A Point Cloud Registration Method Based on Point-to-Triangulation Estimation for Optical Window Free-Form Surfaces Testing by Coordinate Measuring Machine
by Chuanchao Wu, Junjie Shi, Taorui Li, Haijiao Huang, Fudong Chu, Siyuan Jiang, Longyue Li and Chiben Zhang
Photonics 2025, 12(5), 469; https://doi.org/10.3390/photonics12050469 - 10 May 2025
Viewed by 385
Abstract
Optical window freeform surfaces have emerged as a critical research focus in advanced optical engineering owing to their extensive surface degrees of freedom. These surfaces enable the simultaneous correction of on-axis and off-axis aberrations while satisfying stringent requirements for high-performance, lightweight, and compact [...] Read more.
Optical window freeform surfaces have emerged as a critical research focus in advanced optical engineering owing to their extensive surface degrees of freedom. These surfaces enable the simultaneous correction of on-axis and off-axis aberrations while satisfying stringent requirements for high-performance, lightweight, and compact optical systems. In the initial metrological characterization of these surfaces, coordinate measuring machines (CMMs) are conventionally employed for target point cloud acquisition. However, the achievable measurement accuracy (>2 μm) inherently constrained by CMM precision imposes fundamental limitations for subsequent optical inspections requiring sub-micron to nanometer-level resolution. Meanwhile, although optical measurement methods can result in higher measurement accuracy, they also lead to an increase in costs and testing difficulties. To overcome these limitations, we propose an accelerated point cloud registration methodology based on point-to-triangulation distance estimation. In simulation, using optimal coordinate transformation enabled good capabilities for exceptional surface characterization: peak-to-valley (PV) surface error of 10−6 nm, residual error of 5 nm, and registration accuracy of log10 (mm/°). Further, in the experiment, the PV surface error was reduced from 27.3 μm to 6.9 μm, equivalent to a reduction of 3.95 times. These results confirm that the point-to-triangulation distance approximation maintains sufficient fidelity to the nominal point-to-surface distance, thereby empirically validating the efficacy of our proposed methodology. Notably, compared with conventional 3D alignment methods, our novel 2D estimation registration approach with point-to-triangulation surface normal vectors demonstrates significant advantages in computational complexity, which achieved a 78% reduction from O(n3) to O(n) while maintaining sub-millisecond alignment times. We believe that the method has potential for use as a low-cost optical precision measurement in manufacturing technology. Full article
Show Figures

Figure 1

14 pages, 4295 KiB  
Article
ZEMAX Simulations and Experimental Validation of Laser Interferometers
by Muddasir Naeem and Tayyab Imran
Photonics 2025, 12(3), 206; https://doi.org/10.3390/photonics12030206 - 27 Feb 2025
Cited by 1 | Viewed by 1708
Abstract
This study presents the design, simulation, and experimental validation of six fundamental laser interferometer types: Sagnac, Mach–Zehnder, Michelson, Twyman–Green, Fizeau, and Fabry–Pérot. Using ZEMAX OpticStudio in non-sequential mode with the physical optics propagation (POP) algorithm, the simulations provide detailed insights into the optical [...] Read more.
This study presents the design, simulation, and experimental validation of six fundamental laser interferometer types: Sagnac, Mach–Zehnder, Michelson, Twyman–Green, Fizeau, and Fabry–Pérot. Using ZEMAX OpticStudio in non-sequential mode with the physical optics propagation (POP) algorithm, the simulations provide detailed insights into the optical performance of these interferometers. A direct comparison is made between the simulated and experimental fringe patterns, coherent irradiance distributions, and phase plots, demonstrating strong agreement and validating the accuracy of computational modeling for interferometric analysis. The Mach–Zehnder and Michelson configurations exhibit high adaptability and measurement precision, while the Fabry–Pérot interferometer achieves superior spectral resolution. Twyman–Green interferometry proves particularly effective in mapping surface irregularities for optical testing. The results confirm the reliability of ZEMAX OpticStudio for high-precision optical system design and analysis. The novelty of this work lies in the comparative study between ZEMAX simulations and experimental interferometric results, particularly fringe patterns and phase distributions. This approach provides a clearer understanding of interferometer performance and enhances the accuracy of optical metrology, offering valuable insights for both theoretical modeling and practical applications. Full article
(This article belongs to the Special Issue Advances in Interferometric Optics and Applications)
Show Figures

Figure 1

10 pages, 3490 KiB  
Communication
Laser Linewidth Measurement Using an FPGA-Based Delay Self-Homodyne System
by Fanqi Bu, Zhongan Zhao, Longfei Li, Cunwei Zhang, Tie Li, Yaoyao Qi, Jie Ding, Bingzheng Yan, Chen Zhao, Yulei Wang, Zhiwei Lu, Yu Ding and Zhenxu Bai
Photonics 2025, 12(3), 203; https://doi.org/10.3390/photonics12030203 - 26 Feb 2025
Viewed by 777
Abstract
Narrow-linewidth lasers play a crucial role in nonlinear optics, atomic physics, optical metrology, and high-speed coherent optical communications. Precise linewidth measurement is essential for assessing laser noise characteristics; however, conventional methods are often bulky, costly, and unsuitable for integrated applications. This paper presents [...] Read more.
Narrow-linewidth lasers play a crucial role in nonlinear optics, atomic physics, optical metrology, and high-speed coherent optical communications. Precise linewidth measurement is essential for assessing laser noise characteristics; however, conventional methods are often bulky, costly, and unsuitable for integrated applications. This paper presents a compact and cost-effective delay self-homodyne system for laser linewidth measurement, leveraging a field-programmable gate array (FPGA)-based data acquisition circuit. By employing fast Fourier transform (FFT) analysis, the system achieves high-precision linewidth measurement in the kHz range. Additionally, by optimizing the fiber length, the system effectively suppresses low-frequency and 1/f noise, providing an integrated and efficient solution for advanced laser characterization with enhanced performance and reduced cost. Full article
Show Figures

Figure 1

Back to TopTop