GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement
Abstract
:1. Introduction
2. Background and Related Work
3. Methodology
3.1. Overview of LinearTGAN
3.2. Degradation Network
3.3. Generator Network
3.4. Discriminator Network
4. Experimental Design
4.1. Research Questions
4.2. Datasets
4.3. Detailed Training
4.4. Evaluation Metrics
4.5. Baseline
5. Experimental Results
5.1. RQ1: How Effective Is LinearTGAN in Enhancing Linear Acoustic Image Quality?
5.1.1. Quantitative Results
5.1.2. Qualitative Results
5.2. RQ2: How Efficient Is LinearTGAN in Improving Wafer Measurement and Inspection Performance?
5.2.1. Measurement Performance
5.2.2. Inspection Performance
5.3. RQ3: How Feasible Is the System-Level Implementation of LinearTGAN in Practical Applications?
6. Ablation Studies for LinearTGAN
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kamal, K. The Silicon Age: Trends in Semiconductor Devices Industry. J. Eng. Sci. Technol. Rev. 2022, 15, 110–115. [Google Scholar] [CrossRef]
- Lechien, T.; Dehaerne, E.; Dey, B.; Blanco, V.; Halder, S.; De Gendt, S.; Meert, W. Automated semiconductor defect inspection in scanning electron microscope images: A systematic review. arXiv 2023, arXiv:2308.08376. [Google Scholar]
- Khuri-Yakub, B. Scanning acoustic microscopy. Ultrasonics 1993, 31, 361–372. [Google Scholar] [CrossRef]
- Pham, V.; Vo, T.; Vu, D.; Choi, J.; Park, S.; Mondal, S.; Lee, B.-I.; Oh, J. Development of fast scanning module with a novel bubble solution applied to scanning acoustic microscopy system for industrial nondestructive inspection. Expert Syst. Appl. 2023, 228, 120273. Available online: https://www.sciencedirect.com/science/article/pii/S0957417423007753 (accessed on 12 April 2025). [CrossRef]
- Kim, D.; Oh, H.; Choi, J.; Vo, T.; Vu, D.; Mondal, S.; Lee, B.; Oh, J. Development of high-speed scanning acoustic microscopy system: Simplified design and stabilization. Eng. Sci. Technol. Int. J. 2025, 61, 101911. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Qu, J.; Blau, P.; Shih, A.; McSpadden, S.; Pharr, G.; Jang, J. Scanning acoustic microscopy for non-destructive evaluation of subsurface characteristics. In Proceedings of the 6th International Conference on Frontiers of Design and Manufacturing (SM Wu Symposium on Manufacturing Sciences), Xi’an, China, 10–12 June 2004; Volume 435. [Google Scholar]
- Sun, A.; Ju, B. The acoustic micro integrated detection technique for silicon wafer processing. Adv. Mater. Res. 2012, 497, 151–155. [Google Scholar] [CrossRef]
- Ramanathan, S.; Semmens, J.; Kessler, L. High-frequency acoustic microscopy studies of buried interfaces in silicon. In Proceedings of the 56th Electronic Components and Technology Conference, San Diego, CA, USA, 30 May–2 June 2006; p. 4. [Google Scholar]
- Ohlabs Corp., Busan, Republic of Korea. [Online]. Available online: https://www.youtube.com/watch?v=SglCbQLm6C4 (accessed on 14 April 2025).
- Bertero, M.; De Mol, C. III Super-resolution by data inversion. Prog. Opt. 1996, 36, 129–178. [Google Scholar]
- Langenberg, K.; Berger, M.; Kreutter, T.; Mayer, K.; Schmitz, V. Synthetic aperture focusing technique signal processing. NDT Int. 1986, 19, 177–189. [Google Scholar] [CrossRef]
- Kalaycıoğlu, T.; Özgüven, H. Nonlinear structural modification and nonlinear coupling. Mech. Syst. Signal Process. 2014, 46, 289–306. [Google Scholar] [CrossRef]
- Ağalday, M.F.; Çınar, A. Improvement of a subpixel convolutional neural network for a super-resolution image. Appl. Sci. 2025, 15, 2459. [Google Scholar] [CrossRef]
- Jing, T.; Liu, C.; Chen, Y. A lightweight single-image super-resolution method based on the parallel connection of convolution and Swin Transformer blocks. Appl. Sci. 2025, 15, 1806. [Google Scholar] [CrossRef]
- Waseem, I.; Habib, M.; Rehman, E.; Bibi, R.; Yousaf, R.M.; Aslam, M.; Jilani, S.F.; Younis, M.W. Enhanced learning enriched features mechanism using deep convolutional neural network for image denoising and super-resolution. Appl. Sci. 2024, 14, 6281. [Google Scholar] [CrossRef]
- Banerjee, P.; Akarte, S.; Kumar, P.; Shamsuzzaman, M.; Butola, A.; Agarwal, K.; Prasad, D.; Melandsø, F.; Habib, A. High-resolution imaging in acoustic microscopy using deep learning. Mach. Learn. Sci. Technol. 2024, 5, 015007. [Google Scholar] [CrossRef]
- Sharma, A.; Somani, A.; Banerjee, P.; Melandsø, F.; Habib, A. HDL-SAM: A Hybrid Deep Learning Framework for High-Resolution Imaging in Scanning Acoustic Microscopy. In Proceedings of the Synthetic Data for Computer Vision Workshop@ CVPR 2024, Seattle, WA, USA, 17–21 June 2024. [Google Scholar]
- Makra, Á.; Bost, W.; Kalló, I.; Horváth, A.; Fournelle, M.; Gyöngy, M. Enhancement of acoustic microscopy lateral resolution: A comparison between deep learning and two deconvolution methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 136–145. [Google Scholar] [CrossRef]
- Mansourifar, H.; Moskovitz, A.; Klingensmith, B.; Mintas, D.; Simske, S. GAN-based satellite imaging: A survey on techniques and applications. IEEE Access 2022, 10, 118123–118140. [Google Scholar] [CrossRef]
- Somani, A.; Banerjee, P.; Rastogi, M.; Habib, A.; Agarwal, K.; Prasad, D. Image inpainting with hypergraphs for resolution improvement in scanning acoustic microscopy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 3113–3122. [Google Scholar]
- Banerjee, P.; Mishra, S.; Yadav, N.; Agarwal, K.; Melandsø, F.; Prasad, D.; Habib, A. Image inpainting in acoustic microscopy. AIP Adv. 2023, 13, 045225. [Google Scholar] [CrossRef]
- Sha, Y.; He, Z.; Gutierrez, H.; Du, J.; Yang, W.; Lu, X. Small sample classification based on data enhancement and its application in flip chip defection. Microelectron. Reliab. 2023, 141, 114887. [Google Scholar] [CrossRef]
- Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 1905–1914. [Google Scholar]
- Geusebroek, J.; Smeulders, A.; Van De Weijer, J. Fast anisotropic gauss filtering. IEEE Trans. Image Process. 2003, 12, 938–943. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3262–3271. [Google Scholar]
- Le Montagner, Y.; Angelini, E.; Olivo-Marin, J. An unbiased risk estimator for image denoising in the presence of mixed Poisson–Gaussian noise. IEEE Trans. Image Process. 2014, 23, 1255–1268. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Zhao, L.; Gao, J.; Deng, D.; Li, X. SSIR: Spatial shuffle multi-head self-attention for single image super-resolution. Pattern Recognit. 2024, 148, 110195. [Google Scholar] [CrossRef]
- Kruse, R.; Mostaghim, S.; Borgelt, C.; Braune, C.; Steinbrecher, M. Multi-layer perceptrons. Comput. Intell. Methodol. Introd. 2022, 53–124. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing And Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
- Dong, X.; Lei, Y.; Wang, T.; Thomas, M.; Tang, L.; Curran, W.; Liu, T.; Yang, X. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med. Phys. 2019, 46, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yang, X.; Cheng, K. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 2018, 65, 1912–1923. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. pp. 694–711. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Benecki, P.; Kostrzewa, D.; Kawulok, M. Perceptual Loss for Training Multi-Image Super-Resolution. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 6330–6333. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Botchkarev, A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv 2018, arXiv:1809.03006. [Google Scholar]
- Chen, H.; Widodo, A.; Wisnujati, A.; Rahaman, M.; Lin, J.; Chen, L.; Weng, C. AlexNet convolutional neural network for disease detection and classification of tomato leaf. Electronics 2022, 11, 951. [Google Scholar] [CrossRef]
- Koonce, B.; Koonce, B. Vgg network. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–50. [Google Scholar]
- Fadnavis, S. Image interpolation techniques in digital image processing: An overview. Int. J. Eng. Res. Appl. 2014, 4, 70–73. [Google Scholar]
- Li, Y.; Agustsson, E.; Gu, S.; Timofte, R.; Van Gool, L. Carn: Convolutional anchored regression network for fast and accurate single image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, K.; Liang, J.; Van Gool, L.; Timofte, R. Designing a practical degradation model for deep blind image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4791–4800. [Google Scholar]
- Lei, S.; Shi, Z.; Mo, W. Transformer-based multistage enhancement for remote sensing image super-resolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11065–11074. [Google Scholar]
- Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489. [Google Scholar]
- Zhou, S.; Zhang, J.; Zuo, W.; Loy, C. Cross-scale internal graph neural network for image super-resolution. Adv. Neural Inf. Process. Syst. 2020, 33, 3499–3509. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. (2023, 1). Available online: https://github.com/ultralytics/ultralytics (accessed on 5 March 2025).
- Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-time flying object detection with YOLOv8. arXiv 2023, arXiv:2305.09972. [Google Scholar]
Type | Model | Params | PSNR ↑ | SSIM ↑ | LPIPS (AlexNet) ↓ | LPIPS (VGG) ↓ | FID ↓ |
---|---|---|---|---|---|---|---|
Image processing | Bicubic | - | 27.341 | 0.848 | 0.208 | 0.223 | 0.999 |
CNN-Based | CARN | 1,591,939 | 28.887 | 0.873 | 0.101 | 0.195 | 2.493 |
GAN-Based | BSRGAN | 16,661,059 | 26.599 | 0.793 | 0.200 | 0.293 | 3.148 |
Real-ESRGAN | 16,703,171 | 22.808 | 0.520 | 0.423 | 0.515 | 75.122 | |
Transformer | TransENet | 37,311,195 | 26.437 | 0.772 | 0.225 | 0.320 | 0.824 |
GAN+Transformer | LinearTGAN (Ours) | 16,129,284 | 29.479 | 0.874 | 0.095 | 0.182 | 0.445 |
System | Step Size (µm) | SR Applied | Original Resolution | Enhanced Resolution | Scanning Time (s) | Processing Time (s) | Total Time (s) | Scanning Performance |
---|---|---|---|---|---|---|---|---|
TSAM-400 | 50 | No | 6000 × 6000 | - | 2727 | 0 | 2727 | 0% |
USI RSAM 300 | 50 | No | 6000 × 6000 | - | 763 | 0 | 763 | 72% |
USI RSAM 300 | 100 | Yes | 3000 × 3000 | 6000 × 6000 | 190 | 16 | 206 | 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.T.H.; Vo, T.H.; Nguyen, T.N.; Choi, J.; Tran, L.H.; Doan, V.H.M.; Nguyen, V.B.; Lee, W.; Mondal, S.; Oh, J. GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement. Appl. Sci. 2025, 15, 6780. https://doi.org/10.3390/app15126780
Vu TTH, Vo TH, Nguyen TN, Choi J, Tran LH, Doan VHM, Nguyen VB, Lee W, Mondal S, Oh J. GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement. Applied Sciences. 2025; 15(12):6780. https://doi.org/10.3390/app15126780
Chicago/Turabian StyleVu, Thi Thu Ha, Tan Hung Vo, Trong Nhan Nguyen, Jaeyeop Choi, Le Hai Tran, Vu Hoang Minh Doan, Van Bang Nguyen, Wonjo Lee, Sudip Mondal, and Junghwan Oh. 2025. "GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement" Applied Sciences 15, no. 12: 6780. https://doi.org/10.3390/app15126780
APA StyleVu, T. T. H., Vo, T. H., Nguyen, T. N., Choi, J., Tran, L. H., Doan, V. H. M., Nguyen, V. B., Lee, W., Mondal, S., & Oh, J. (2025). GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement. Applied Sciences, 15(12), 6780. https://doi.org/10.3390/app15126780