High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection
Abstract
1. Introduction
2. Basic Principles
3. Experimental Setup
4. Experimental Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, J.B.S.; Helfstein, H.A.; Saita, M.T.; Degasperi, F.T.; Torres, R.B.; Barbosa, E.A. Gas mixture analysis by temperature-independent, multi-wavelength refractive mixing rules. J. Chem. Thermodyn. 2025, 206, 107473. [Google Scholar] [CrossRef]
- Butt, M.A. Loop-terminated Mach–Zehnder interferometer integrated with functional polymer for CO2 gas sensing. Appl. Sci. 2024, 14, 4714. [Google Scholar] [CrossRef]
- Kozlov, D.N. Near-IR range laser generation of refractive index gratings in O2 gas: Role of mono- and bimolecular absorption and collisional relaxation. Chem. Phys. 2025, 593, 112619. [Google Scholar] [CrossRef]
- Jang, Y.S.; Kim, S.W. Compensation of the refractive index of air in laser interferometer for distance measurement: A review. Int. J. Precis. Eng. Manuf. 2017, 18, 1881–1890. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Yan, L.; Lou, Y.; Zhou, C.; Zhang, S.; Cui, J. Precision measurement of the refractive index of air using a phase modulated homodyne interferometer with a variable length vacuum cavity. Meas. Sci. Technol. 2019, 30, 075010. [Google Scholar] [CrossRef]
- Sun, C.; Yu, F.; Chen, H.; Wang, D.; Xu, B. Highly sensitive gas pressure sensing with temperature monitoring using a slightly tapered fiber with an inner micro-cavity and a micro-channel. Sensors 2024, 24, 6844. [Google Scholar] [CrossRef]
- Chen, Z.; Grace, I.M.; Woltering, S.L.; Chen, L.; Gee, A.; Baugh, J.; Briggs, G.A.D.; Bogani, L.; Mol, J.A.; Lambert, C.J.; et al. Quantum interference enhances the performance of single-molecule transistors. Nat. Nanotechnol. 2024, 19, 986–992. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Guo, X.; Cui, L.; Li, X.; Ou, Z.Y. Phase-dependent Hanbury-Brown and Twiss effect for the complete measurement of the complex coherence function. Light Sci. Appl. 2025, 14, 46. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Abouelkhir, N.E.; Slaoui, A.; Ahl Laamara, R. Quantum phase estimation and realistic detection schemes in Mach–Zehnder interferometer using SU (2) coherent states. Phys. Lett. A 2024, 522, 129786. [Google Scholar] [CrossRef]
- Hou, L.L.; Zhang, J.D.; Zheng, K.M.; Wang, S. Two-parameter estimation with single squeezed-light interferometer via double homodyne detection. Opt. Commun. 2024, 570, 130898. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Zhuang, H.; Qian, J.; Liu, H.; Cao, J.; Shi, Y.; Wang, X.; Wu, W. A novel MZI fiber sensor with enhanced curvature and strain sensitivity based on four-core fiber. Micromachines 2024, 15, 1427. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Wu, L.A.; Kimble, H.J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 1987, 59, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.J.; Pang, H.Y.; Shen, W.H.; Fan, Y.X.; Tao, Z.Y. Switchable high-stability dual-wavelength fiber laser based on seven-core fiber. J. Opt. 2025, 27, 045704. [Google Scholar] [CrossRef]
- Shaheen, M.E.; Abdelhameed, S.T.; Abdelmoniem, N.M.; Hashim, H.M.; Ghazy, R.A.; Abdel Gawad, S.A.; Ghazy, A.R. Determination of the refractive index of air and its variation with temperature and pressure using a Mach–Zehnder interferometer. J. Opt. 2023, 53, 2219–2228. [Google Scholar] [CrossRef]
- Yu, Z.; Bao, K.; Chen, J.; Lei, J.; Wang, Q.; Dou, J.; Liu, J.; Zhao, M.; Hu, Y.; Jing, Q.; et al. Direct object recovery from the Fraunhofer diffraction integral. Opt. Lett. 2025, 50, 534–537. [Google Scholar] [CrossRef]
- Wamg, G.; Shi, Q.; Chen, F.; Yu, Y. Gas sensor based on multiple Fano resonances in metal-insulator-metal waveguide resonator system. J. Optoelectron. Adv. Mater. 2022, 24, 323–331. [Google Scholar]
- Tang, X.; Li, Y.; Chen, F.; Yang, W. Gas concentration and refractive index sensor based on plasmonic induced absorption in metal-insulator-metal waveguide coupled with arc resonators structure. Phys. Scr. 2024, 99, 065561. [Google Scholar] [CrossRef]
- Wang, X.Y.; Guo, X.B.; Jia, Y.X.; Zhang, Y.; Lu, Z.G.; Liu, J.Q.; Li, Y.M. Accurate shot-noise-limited calibration of a time-domain balanced homodyne detector for continuous-variable quantum key distribution. J. Light. Technol. 2023, 41, 5518–5528. [Google Scholar] [CrossRef]
- Protte, M.; Schapeler, T.; Sperling, J.; Bartley, T.J. Low-noise balanced homodyne detection with superconducting nanowire single-photon detectors. Opt. Quantum 2024, 2, 1–6. [Google Scholar] [CrossRef]
- Qi Ng, S.; Zhang, G.; Lim, C.; Wang, C. A chip-integrated homodyne detection system with enhanced bandwidth performance for quantum applications. Quantum Sci. Technol. 2024, 9, 045010. [Google Scholar] [CrossRef]
- Wang, C.; Primaatmaja, I.W.; Ng, H.J.; Haw, J.Y.; Ho, R.; Zhang, J.; Zhang, G.; Lim, C. Provably-secure quantum randomness expansion with uncharacterised homodyne detection. Nat. Commun. 2023, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Fan, Y.; Huang, Z.; Tang, R.; Ma, S.; Lei, Y.; Ding, Y.; Zhu, X.; Liu, T.; Liu, Z.; et al. Coherent detection of the rotational Doppler effect measurement based on triple Fourier transform. Opt. Express 2024, 32, 11873–11885. [Google Scholar] [CrossRef]
- Wang, W.; Li, F.; Li, J.; Ju, M.; Zheng, L.; Tian, Y.; Yin, W.; Tian, L.; Zheng, Y. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited). Infrared Laser Eng. 2022, 51, 0300. [Google Scholar]
- Zou, M.; Mao, Y.; Chen, T.Y. Rigorous calibration of homodyne detection efficiency for continuous-variable quantum key distribution. Opt. Express 2022, 30, 22788–22797. [Google Scholar] [CrossRef] [PubMed]
- Edlen, B. The Refractive Index of Air. Metrologia 1966, 2, 71. [Google Scholar] [CrossRef]
- Downs, M.J.; Brich, K.P. The results of a comparison between calculated and measured values of the refractive index of air. J. Phys. E Sci. Instrum. 1988, 21, 694–695. [Google Scholar]
- Sun, X.; Li, W.; Tian, Y.; Li, F.; Tian, L.; Wang, Y.; Zheng, Y. Quantum positioning and ranging via a distributed sensor network. Photonics Res. 2022, 10, 2886. [Google Scholar] [CrossRef]
- Jin, X.; Su, J.; Zheng, Y.; Chen, C.; Wang, W.; Peng, K. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express 2015, 23, 23859–23866. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Xie, F.; Feng, W.; Zhu, Y.; Zhang, X.; Liu, F. High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection. Sensors 2025, 25, 3519. https://doi.org/10.3390/s25113519
Miao Y, Xie F, Feng W, Zhu Y, Zhang X, Liu F. High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection. Sensors. 2025; 25(11):3519. https://doi.org/10.3390/s25113519
Chicago/Turabian StyleMiao, Yanan, Fang Xie, Wentao Feng, Yifeng Zhu, Xun Zhang, and Fang Liu. 2025. "High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection" Sensors 25, no. 11: 3519. https://doi.org/10.3390/s25113519
APA StyleMiao, Y., Xie, F., Feng, W., Zhu, Y., Zhang, X., & Liu, F. (2025). High-Precision Interferometric Measurements of Gas Refractive Index Using Homodyne Detection. Sensors, 25(11), 3519. https://doi.org/10.3390/s25113519